2 resultados para Algebraic Curve
Resumo:
The category of rational SO(2)--equivariant spectra admits an algebraic model. That is, there is an abelian category A(SO(2)) whose derived category is equivalent to the homotopy category of rational$SO(2)--equivariant spectra. An important question is: does this algebraic model capture the smash product of spectra? The category A(SO(2)) is known as Greenlees' standard model, it is an abelian category that has no projective objects and is constructed from modules over a non--Noetherian ring. As a consequence, the standard techniques for constructing a monoidal model structure cannot be applied. In this paper a monoidal model structure on A(SO(2)) is constructed and the derived tensor product on the homotopy category is shown to be compatible with the smash product of spectra. The method used is related to techniques developed by the author in earlier joint work with Roitzheim. That work constructed a monoidal model structure on Franke's exotic model for the K_(p)--local stable homotopy category. A monoidal Quillen equivalence to a simpler monoidal model category that has explicit generating sets is also given. Having monoidal model structures on the two categories removes a serious obstruction to constructing a series of monoidal Quillen equivalences between the algebraic model and rational SO(2)--equivariant spectra.
Resumo:
Understanding the overall catalytic activity trend for rational catalyst design is one of the core goals in heterogeneous catalysis. In the past two decades, the development of density functional theory (DFT) and surface kinetics make it feasible to theoretically evaluate and predict the catalytic activity variation of catalysts within a descriptor-based framework. Thereinto, the concept of the volcano curve, which reveals the general activity trend, usually constitutes the basic foundation of catalyst screening. However, although it is a widely accepted concept in heterogeneous catalysis, its origin lacks a clear physical picture and definite interpretation. Herein, starting with a brief review of the development of the catalyst screening framework, we use a two-step kinetic model to refine and clarify the origin of the volcano curve with a full analytical analysis by integrating the surface kinetics and the results of first-principles calculations. It is mathematically demonstrated that the volcano curve is an essential property in catalysis, which results from the self-poisoning effect accompanying the catalytic adsorption process. Specifically, when adsorption is strong, it is the rapid decrease of surface free sites rather than the augmentation of energy barriers that inhibits the overall reaction rate and results in the volcano curve. Some interesting points and implications in assisting catalyst screening are also discussed based on the kinetic derivation. Moreover, recent applications of the volcano curve for catalyst design in two important photoelectrocatalytic processes (the hydrogen evolution reaction and dye-sensitized solar cells) are also briefly discussed.