22 resultados para 312.27
Resumo:
Thursday, October 27 · 7:00pm - 8:00pm
Location
Brooklyn College
Studio 312 in Roosevelt Hall, Bedford Ave.
Brooklyn, NY
Created By
Cory Bracken
Resumo:
IIL-27 counters the effect of TGF-beta+IL-6 on naive CD4(+) T cells, resulting in near complete inhibition of de novo Th17 development. In contrast, little is known about the effect of IL-27 on already differentiated Th17 cells. A better understanding of how IL-27 regulates these cells is needed to evaluate the therapeutic potential of IL-27 in Th17 cells-associated diseases. In this study, we show that IL-27 had surprisingly little effect on committed Th17 cells, despite its expression of a functional IL-27R. Contrary to de novo differentiation of Th17 cells, IL-27 did not suppress expression of retinoid-related orphan receptor (ROR)gammat or RORalpha in committed Th17 cells. Consistent with this finding, the frequency of committed Th17 cells and their cytokine secretion remained unaffected by IL-27. Both memory Th17 cells (CD4(+)CD25(-)CD62L(low)) that developed in vivo and encephalitogenic Th17 cells infiltrating the CNS of mice developing experimental autoimmune encephalomyelitis produced similar amounts of IL-17A when reactivated with IL-23 in the absence and presence of exogenous IL-27. Finally, IL-27 failed to suppress encephalitogenicity of Th17 cells in an adoptive transfer of experimental autoimmune encephalomyelitis. Analysis ex vivo of transferred Th17 cells in the spleen and CNS of recipient mice showed that cells retained similar phenotype irrespective of whether cells were treated or not with IL-27. Our data demonstrate that in contrast to inhibition of de novo differentiation of Th17 cells, IL-27 has little or no effect on committed Th17 cells. These findings indicate that therapeutic applications of IL-27 might have a limited efficacy in inflammatory conditions where aggressive Th17 responses have already developed.
Resumo:
PURPOSE: Animal models are important for pre-clinical assessment of novel therapies in metastatic bladder cancer. The F344/AY-27 model involves orthotopic colonisation with AY-27 tumour cells which are syngeneic to F344 rats. One disadvantage of the model is the unknown status of colonisation between instillation and sacrifice. Non-invasive optical imaging using red fluorescence reporters could potentially detect tumours in situ and would also reduce the number of animals required for each experiment.
MATERIALS AND METHODS: AY-27 cells were stably transfected with either pDsRed2-N1 or pcDNA3.1tdTomato. The intensity and stability of fluorescence in the resultant AY-27/DsRed2-N1 and AY-27/tdTomato stable cell lines were compared using Xenogen IVIS®200 and Olympus IX51 systems.
RESULTS: AY-27/tdTomato fluorescence intensity was 60-fold brighter than AY-27/DsRed2-N1 and was sustained in AY-27/tdTomato cells following freezing and six subsequent sub-cultures. After sub-cutaneous injection, fluorescence intensity from AY-27/tdTomato cells was threefold stronger than that detected from AY-27/DsRed2-N1 cells. IVIS®200 detected fluorescence from AY-27/tdTomato and AY-27/DsRed2-N1 cells colonising resected and exteriorised bladders, respectively. However, the deep-seated position of the bladder precluded in vivo imaging. Characteristics of AY-27/tdTomato cells in vitro and in tumours colonising F344 rats resembled those of parental AY-27 cells. Tumour transformation was observed in the bladders colonised with AY-27/DsRed2-N1 cells.
CONCLUSIONS: In vivo whole-body imaging of internal red fluorescent animal tumours should use pcDNA3.1tdTomato rather than pDsRed2-N1. Optical imaging of deep-seated organs in larger animals remains a challenge which may require proteins with brighter red or far-red fluorescence and/or alternative approaches.