20 resultados para 291003 Photogrammetry and Remote Sensing


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid proliferation of remote sensing and geographic information systems (GIS) into geomorphologic mapping has increased the objectivity and efficiency of landform segmentation, measurement, and classification. The near ubiquitous presence of Earth-observing satellites provides an array of perspectives to visualize the biophysical characteristics of landscapes, access inhospitable terrain on a predictable schedule, and study landscape processes when conditions are hazardous. GIS technology has altered the analysis, visualization, and dissemination of landform data due to the shared theoretical concepts that are fundamental to geomorphology and GIScience. The authors review geospatial technology applications in landform mapping (including emerging issues) within glacial, volcanic, landslide, and fluvial research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) onboard the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study anti control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to review recent developments in the design and fabrication of Frequency Selective Surfaces (FSS) which operate above 300 GHz. These structures act as free space electromagnetic filters and as such provide passive remote sensing instruments with multispectral capability by separating the scene radiation into separate frequency channels. Significant advances in computational electromagnetics, precision micromachining technology and metrology have been employed to create state of the art FSS which enable high sensitivity receivers to detect weak molecular emissions at THz wavelengths. This new class of quasi-optical filter exhibits an insertion loss

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grey Level Co-occurrence Matrix (GLCM), one of the best known tool for texture analysis, estimates image properties related to second-order statistics. These image properties commonly known as Haralick texture features can be used for image classification, image segmentation, and remote sensing applications. However, their computations are highly intensive especially for very large images such as medical ones. Therefore, methods to accelerate their computations are highly desired. This paper proposes the use of programmable hardware to accelerate the calculation of GLCM and Haralick texture features. Further, as an example of the speedup offered by programmable logic, a multispectral computer vision system for automatic diagnosis of prostatic cancer has been implemented. The performance is then compared against a microprocessor based solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete structures in marine environments are subjected to cyclic wetting and drying, corrosion of reinforcement due to chloride ingress and biological deterioration. In order to assess the quality of concrete and predict the corrosion activity of reinforcing steel in concrete in this environment, it is essential to monitor the concrete continuously right from the construction phase to the end of service life of the structure. In this paper a novel combination of sensor techniques which are integrated in a sensor probe is used to monitor the quality of cover concrete and corrosion of the reinforcement. The integrated sensor probe was embedded in different concrete samples exposed to an aggressive marine environment at the Hangzhou Bay Bridge in China. The sensor probes were connected to a monitoring station, which enabled the access and control of the data remotely from Belfast, UK. The initial data obtained from the monitoring station reflected the early age properties of the concretes and distinct variations in these properties were observed with different concrete types.