150 resultados para 2804
Resumo:
The non-beta-amyloid (Aß) component of Alzheimer's disease amyloid (NAC) and its precursor a-synuclein have been linked to amyloidogenesis in several neurodegenerative diseases. NAC and a-synuclein both form ß-sheet structures upon ageing, aggregate to form fibrils, and are neurotoxic. We recently established that a peptide comprising residues 3±18 of NAC retains these properties. To pinpoint the exact region responsible we have carried out assays of toxicity and physicochemical properties on smaller fragments of NAC. Toxicity was measured by the ability of fresh and aged peptides to inhibit the reduction of the redox dye 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) by rat pheochromocytoma PC12 cells and human neuroblastoma SHSY-5Y cells. On immediate dissolution, or after ageing, the fragments NAC(8±18) and NAC(8±16) are toxic, whereas NAC(12±18), NAC(9±16) and NAC(8±15) are not. Circular dichroism indicates that none of the peptides displays ß-sheet structure; rather all remain random coil throughout 24 h. However, in acetonitrile, an organic solvent known to induce ß sheet, fragments NAC(8±18) and NAC(8±16) both form ß-sheet structure. Only NAC(8±18) aggregates, as indicated by concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. These findings indicate that residues 8±16 of NAC, equivalent to residues 68±76 in a-synuclein, comprise the region crucial for toxicity.
Resumo:
Studies suggest that activation of phosphoinositide 3-kinase-Akt may protect against neuronal cell death in Alzheimer's disease (AD). Here, however, we provide evidence of increased Akt activation, and hyperphosphorylation of critical Akt substrates in AD brain, which link to AD pathogenesis, suggesting that treatments aiming to activate the pathway in AD need to be considered carefully. A different distribution of Akt and phospho-Akt was detected in AD temporal cortex neurons compared with control neurons, with increased levels of active phosphorylated-Akt in particulate fractions, and significant decreases in Akt levels in AD cytosolic fractions, causing increased activation of Akt (phosphorylated-Akt/total Akt ratio) in AD. In concordance, significant increases in the levels of phosphorylation of total Akt substrates, including: GSK3ßSer9, tauSer214, mTORSer2448, and decreased levels of the Akt target, p27kip1, were found in AD temporal cortex compared with controls. A significant loss and altered distribution of the major negative regulator of Akt, PTEN (phosphatase and tensin homologue deleted on chromosome 10), was also detected in AD neurons. Loss of phosphorylated-Akt and PTEN-containing neurons were found in hippocampal CA1 at end stages of AD. Taken together, these results support a potential role for aberrant control of Akt and PTEN signalling in AD.
Resumo:
Brevinins are peptides of 24 amino acid residues, originally isolated from the skin of the Oriental frog, Rana brevipoda porsa, by nature of their microbicidal activity against a wide range of Gram-positive and Gram-negative bacteria and against strains of pathogenic fungi. cDNA libraries were constructed from lyophilized skin secretion of three, unstudied species of Chinese frog, Odorrana schmackeri, Odorrana versabilis and Pelophylax plancyi fukienensis, using our recently developed technique. In this report, we describe the “shotgun” cloning of novel brevinins by means of 3'-RACE, using a “universal” degenerate primer directed towards a highly conserved nucleic acid sequence domain within the 5'-untranslated region of previously characterized frog skin peptide cDNAs. Novel brevinins, deduced from cloned cDNA open-reading frames, were subsequently identified as mature peptides in the same samples of respective species skin secretions. Bioinformatic analysis of both prepro-brevinin nucleic acid sequences and translated open-reading frame amino acid sequences revealed a highly conserved signal peptide domain and a hypervariable anti-microbial peptide-encoding domain. The experimental approach described here can thus rapidly provide robust structural data on skin anti-microbial peptides without harming the donor amphibians.
Resumo:
Amphibian skin secretions are rich in antimicrobial peptides that act as important components of an innate immune system. Here, we describe a novel “shotgun” skin peptide precursor cloning technique that facilitates rapid access to these genetically encoded molecules and effects their subsequent identification and structural characterization from the secretory peptidome. Adopting this approach on a skin secretion-derived library from a hitherto unstudied Chinese species of frog, we identified a family of novel antimicrobial peptide homologs, named pelophylaxins, that belong to previously identified families (ranatuerins, brevinins and temporins) found predominantly in the skin secretions from frogs of the genus Rana. These data further substantiate the scientifically robust nature of applying parallel transcriptome and peptidome analyses on frog defensive skin secretions that can be obtained in a non-invasive, non-destructive manner. In addition, the present data illustrate that rapid structural characterization of frog skin secretion peptides can be achieved from an unstudied species without prior knowledge of primary structures of endogenous peptides.
Resumo:
Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.
Resumo:
Chronic administration of thiazolidinediones might predispose to cardiac hypertrophy. The aim was to investigate direct effects of rosiglitazone in rat ventricular cardiomyocytes maintained in vitro (24 h). Rosiglitazone (=10-5 M) did not increase protein synthesis and produced small inconsistent increases in cellular protein. In the presence of serum (10% v/v), but not insulin-like growth factor (IGF-1, 10-8 M) or insulin (1 U/ml), an interaction with rosiglitazone to stimulate protein synthesis was observed. The hypertrophic responses to noradrenaline (5×10-6 M), PMA (10-7 M) and ET-1 (10-7 M) were not attenuated by rosiglitazone. Rosiglitazone (10-7 M) did not influence protein synthesis in response to insulin (1 U/ml) and elevated glucose (2.5×10-2 M) alone or in combination, but attenuated the increase in protein mass observed in response to elevated glucose alone. In re-differentiated cardiomyocytes, a model of established hypertrophy, rosiglitazone (10-8 M–10-6 M) increased protein synthesis. Together, these data indicate that rosiglitazone does not initiate cardiomyocyte hypertrophy directly in vitro. However, during chronic administration, the interaction of rosiglitazone with locally-derived growth-regulating factors may make a modest contribution to cardiac remodelling and influence the extent of compensatory hypertrophy of the compromised rat heart.
Resumo:
Increased levels of neuropeptide Y correlate with severity of left ventricular hypertrophy in vivo. At cardiomyocyte level, hypertrophy is characterised by increased mass and altered phenotype. The aims were to determine the contributions of increased synthesis and reduced degradation of protein to neuropeptide Y-mediated increase in mass, assess effects on gene expression, and characterise neuropeptide Y Y receptor subtype involvement. Neuropeptide Y (10 nM) increased protein mass of adult rat ventricular cardiomyocytes maintained in culture (24 h) (16%>basal) and de novo protein synthesis (incorporation of [14C]phenylalanine) (18%>basal). Neuropeptide Y (100 nM) prevented degradation of existing protein at 8 h. Actinomycin D (5 µM) attenuated increases in protein mass to neuropeptide Y (=1 nM) but not to neuropeptide Y (10 nM). [Leu31, Pro34]neuropeptide Y (10 nM), an agonist at neuropeptide Y Y1 receptors, increased protein mass (25%>basal) but did not stimulate protein synthesis. Neuropeptide Y-(3–36) (10 nM), an agonist at neuropeptide Y Y2 receptors, increased protein mass (29%>basal) and increased protein synthesis (13%>basal), respectively. Actinomycin D (5 µM) abolished the increase in protein mass elicited by neuropeptide Y-(3–36) but not that by [Leu31, Pro34]neuropeptide Y. BIBP3226 [(R)-N2-(diphenylacetyl)-N-(4-hydroxyphenylmethyl)-d-arginine amide] (1 µM), a neuropeptide Y Y1 receptor subtype-selective antagonist, and T4 [neuropeptide Y-(33–36)]4, a neuropeptide Y Y2 receptor subtype-selective antagonist, attenuated the increase in protein mass to 100 nM neuropeptide Y by 68% and 59%, respectively. Neuropeptide Y increased expression of the constitutive gene, myosin light chain-2 (MLC-2), maximally at 12 h (4.7-fold>basal) but did not induce (t=36 h) expression of foetal genes (atrial natriuretic peptide (ANP), skeletal-a-actin and myosin heavy chain-ß). This increase was attenuated by 86% and 51%, respectively, by BIBP3226 (1 µM) and T4 [neuropeptide Y-(33–36)]4 (100 nM). [Leu31, Pro34]neuropeptide Y (100 nM) (2.4-fold>basal) and peptide YY-(3–36) (100 nM) (2.3 fold>basal) increased expression of MLC-2 mRNA at 12 h. In conclusion, initiation of cardiomyocyte hypertrophy by neuropeptide Y requires activation of both neuropeptide Y Y1 and neuropeptide Y Y2 receptors and is associated with enhanced synthesis and attenuated degradation of protein together with increased expression of constitutive genes but not reinduction of foetal genes.