3 resultados para wind energy potential

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research explores the policy implications of the approval of three wind energy projects on the Oak Ridges Moraine, and their impact on the Coordinated Land Use Planning Review process. Specifically, it focuses on the involvement of First Nations and environmental non-governmental organizations (ENGOs). This research was conducted through analyzing submissions to the Coordinated Land Use Planning Review, related legislation and policy, Environmental Review Tribunal hearing documents, and interviews with key informants. This research culminates in a number of recommendations to the Coordinated Review informed by the analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Australian southern continental margin is the world’s largest site of cool-water carbonate deposition, and the Great Australian Bight is its largest sector. The Eyre Peninsula is fringed by coastal beaches with aeolianites and marks the eastern edge of the Great Australian Bight. Five shoreline transects of varying lengths spanned a 150km longitudinal distance and at each the intertidal, beach, dune and secondary dune environments were sampled, for a total of 18 samples. Sediments are a mixture of modern, relict, and Cenozoic carbonates, and quartz grains. Carbonate aeolianites on the western Eyre Peninsula are mostly composed of modern carbonate grains: predominantly molluscs (23-33%) and benthic foraminifera (10-26%), locally abundant coralline algae (3-28%), echinoids (2-22%), and bryozoans (2-14%). Cenozoic grain abundance ranges from 1-6% whereas relict grain abundance ranges from 0-17%. A southward increase in bryozoan particles correlates with a nutrient element abundance and decrease in temperature due to a large seasonal coastal upwelling system that drives 2-3 major upwelling events per year, bringing cold, nutrient rich, Sub-Antarctic Surface Water (<12°C) onto the shelf. In southern, mostly wind protected locations, the beach and dune sediment compositions are similar, indicating that wind energy has successfully carried all sediment components of the beach into the adjacent dunes. In northern, exposed locations, the composition is not the same everywhere, and trends indicate that relative wind energy has the ability to impact grain composition through preferential wind transport. Aeolianite composition is therefore a function of both upwelling and the degree of coastal exposure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, the origin of large-scale structures in hot star winds, believed to be responsible for the presence of discrete absorption components (DACs) in the absorption troughs of ultraviolet resonance lines, is constrained using both observations and numerical simulations. These structures are understood as arising from bright regions on the stellar surface, although their physical cause remains unknown. First, we use high quality circular spectropolarimetric observations of 13 well-studied OB stars to evaluate the potential role of dipolar magnetic fields in producing DACs. We perform longitudinal field measurements and place limits on the field strength using Bayesian inference, assuming that it is dipolar. No magnetic field was detected within this sample. The derived constraints statistically refute any significant dynamical influence from a magnetic dipole on the wind for all of these stars, ruling out such fields as a cause for DACs. Second, we perform numerical simulations using bright spots constrained by broadband optical photometric observations. We calculate hydrodynamical wind models using three sets of spot sizes and strengths. Co-rotating interaction regions are yielded in each model, and radiative transfer shows that the properties of the variations in the UV resonance lines synthesized from these models are consistent with those found in observed UV spectra, establishing the first consistent link between UV spectroscopic line profile variability and photometric variations and thus supporting the bright spot paradigm (BSP). Finally, we develop and apply a phenomenological model to quantify the measurable effects co-rotating bright spots would have on broadband optical photometry and on the profiles of photopheric lines in optical spectra. This model can be used to evaluate the existence of these spots, and, in the event of their detection, characterize them. Furthermore, a tentative spot evolution model is presented. A preliminary analysis of its output, compared to the observed photometric variations of xi Persei, suggests the possible existence of “active longitudes” on the surface of this star. Future work will expand the range of observational diagnostics that can be interpreted within the BSP, and link phenomenology (bright spots) to physical processes (magnetic spots or non-radial pulsations).