2 resultados para tuning without chirp
em QSpace: Queen's University - Canada
Resumo:
Dense deployment of wireless local area network (WLAN) access points (APs) is an important part of the next generation Wi-Fi and standardization (802.11ax) efforts are underway. Increasing demand for WLAN connectivity motivates such dense deployments, especially in geographical areas with large numbers of users, such as stadiums, large enterprises, multi-tenant buildings, and urban cities. Although densification of WLAN APs guarantees coverage, it is susceptible to increased interference and uncoordinated association of stations (STAs) to APs, which degrade network throughput. Therefore, to improve network throughput, algorithms are proposed in this thesis to optimally coordinate AP associations in the presence of interference. In essence, coordination of APs in dense WLANs (DWLANs) is achieved through coordination of STAs' associations with APs. While existing approaches suggest tuning of APs' beacon powers or using transmit power control (TPC) for association control, here, the signal-to-interference-plus-noise ratio (SINRs) of STAs and the clear channel assessment (CCA) threshold of the 802.11 MAC protocol are employed. The proposed algorithms in this thesis enhance throughput and minimize coverage holes inherent in cell breathing and TPC techniques by not altering the transmit powers of APs, which determine cell coverage. Besides uncoordinated AP associations, unnecessary frequent transmission deferment is envisaged as another problem in DWLANs due to the clear channel assessment aspect of the carrier sensing multiple access collision avoidance (CSMA/CA) scheme in 802.11 standards and the short spatial reuse distance between co-channel APs. To address this problem in addition to AP association coordination, an algorithm is proposed for CCA threshold adjustment in each AP cell, such that CCA threshold used in one cell mitigates transmission deferment in neighboring cells. Performance evaluation reveals that the proposed association optimization algorithms achieve significant gain in throughput when compared with the default strongest signal first (SSF) association scheme in the current 802.11 standard. Also, further gain in throughput is observed when the CCA threshold adjustment is combined with the optimized association. Results show that when STA-AP association is optimized and CCA threshold is adjusted in each cell, throughput improves. Finally, transmission delay and the number of packet re-transmissions due to collision and contention significantly decrease.
Resumo:
Despite attempts to identify the mechanisms by which obesity leads to the development of Type 2 Diabetes (T2D), it remains unclear why some but not all adults with obesity develop T2D. Given the established associations between visceral adipose tissue (VAT) and liver fat with insulin resistance, we hypothesized that compared to age and obesity matched adults who were non-diabetic (NT2D), adults with T2D would have greater amounts of VAT and liver fat. The International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship with Cardiometabolic Risk/Intra-Abdominal Adiposity (INSPIRE ME IAA) aims to study the associations between VAT and liver fat and risk of developing T2D and cardiovascular disease. Four thousand, five hundred and four participants were initially recruited; from this, 2383 White and Asian adults were selected for this ancillary analysis. The NT2D and T2D groups were matched for age, body mass index (BMI) and waist circumference (WC). The T2D and NT2D groups were also compared to participants with either impaired fasting glucose (IFG) or impaired glucose tolerance (IGT; IFG/IGT)). Abdominal adipose tissue was measured by computed tomography; liver fat was estimated using computed tomography-derived mean attenuation. Secondary analysis determined whether differences existed between NT2D and T2D groups in VAT and liver fat accumulation within selected BMI categories for Whites and Asians. We report across sex and race, T2D and IFG/IGT groups had elevated VAT and liver fat compared to the NT2D group (p<0.05). VAT was not different between IFG/IGT and T2D groups (p>0.05), however liver fat was greater in the T2D group compared to the IFG/IGT group in both Whites and Asians (p<0.05). Within each BMI category, the T2D group had elevated VAT and liver fat compared to the age and anthropometrically matched NT2D group in both Whites and Asians (p<0.05). With few exceptions, abdominal subcutaneous adipose tissue was not different in the T2D or IFG/IGT groups compared to the NT2D group independent of sex and race. Compared to age and obesity-matched adults who are NT2D, we observe that White and Asian adults with T2D, and those with IFG/IGT, present with greater levels of both VAT and liver fat.