2 resultados para thin-film optics
em QSpace: Queen's University - Canada
Resumo:
The main goal of this thesis is to show the versatility of glancing angle deposition (GLAD) thin films in applications. This research is first focused on studying the effect of select deposition variables in GLAD thin films and secondly, to demonstrate the flexibility of GLAD films to be incorporated in two different applications: (1) as a reflective coating in low-level concentration photovoltaic systems, and (2) as an anode structure in dye-sensitized solar cells (DSSC). A particular type of microstructure composed of tilted micro-columns of titanium is fabricated by GLAD. The microstructures form elongated and fan-like tilted micro-columns that demonstrate anisotropic scattering. The thin films texture changes from fiber texture to tilted fiber texture by increasing the vapor incidence angle. At very large deposition angles, biaxial texture forms. The morphology of the thin films deposited under extreme shadowing condition and at high temperature (below recrystallization zone) shows a porous and inclined micro-columnar morphology, resulting from the dominance of shadowing over adatom surface diffusion. The anisotropic scattering behavior of the tilted Ti thin film coatings is quantified by bidirectional reflectance distribution function (BRDF) measurements and is found to be consistent with reflectance from the microstructure acting as an array of inclined micro-mirrors that redirect the incident light in a non-specular reflection. A silver-coating of the surface of the tilted-Ti micro-columns is performed to enhance the total reflectance of the Ti-thin films while keeping the anisotropic scattering behavior. By using such coating is as a booster reflector in a laboratory-scale low-level concentration photovoltaic system, the short-circuit current of the reference silicon solar cell by 25%. Finally, based on the scattering properties of the tilted microcolumnar microstructure, its scattering effect is studied as a part of titanium dioxide microstructure for the anode in DSSCs. GLAD-fabricated TiO2 microstructures for the anode in a DSSC, consisting of vertical micro-columns, and combined vertical topped with tilted micro-columns are compared. The solar cell with the two-part microstructure shows the highest monochromatic incident photon to current efficiency with 20% improvement compared to the vertical microstructure, and the efficiency of the cell increases from 1.5% to 2% due to employing the scattering layer.
Resumo:
In this work I study the optical properties of helical particles and chiral sculptured thin films, using computational modeling (discrete dipole approximation, Berreman calculus), and experimental techniques (glancing angle deposition, ellipsometry, scatterometry, and non-linear optical measurements). The first part of this work focuses on linear optics, namely light scattering from helical microparticles. I study the influence of structural parameters and orientation on the optical properties of particles: circular dichroism (CD) and optical rotation (OR), and show that as a consequence of random orientation, CD and OR can have the opposite sign, compared to that of the oriented particle, potentially resulting in ambiguity of measurement interpretation. Additionally, particles in random orientation scatter light with circular and elliptical polarization states, which implies that in order to study multiple scattering from randomly oriented chiral particles, the polarization state of light cannot be disregarded. To perform experiments and attempt to produce particles, a newly constructed multi stage thin film coating chamber is calibrated. It enables the simultaneous fabrication of multiple sculptured thin film coatings, each with different structure. With it I successfully produce helical thin film coatings with Ti and TiO_{2}. The second part of this work focuses on non-linear optics, with special emphasis on second-harmonic generation. The scientific literature shows extensive experimental and theoretical work on second harmonic generation from chiral thin films. Such films are expected to always show this non-linear effect, due to their lack of inversion symmetry. However no experimental studies report non-linear response of chiral sculptured thin films. In this work I grow films suitable for a second harmonic generation experiment, and report the first measurements of non-linear response.