3 resultados para subjective norm
em QSpace: Queen's University - Canada
Resumo:
Background: Academic integrity (AI) has been defined as the commitment to the values of honesty, trust, fairness, respect, and responsibility with courage in all academic endeavours. The senior years of nursing studies provide an intersection for students to transition to professional roles through student clinical practice. It is essential to understand what predicts senior nursing students’ intention to behave with AI so that efforts can be directed to initiatives focused on strengthening their commitment to behaving with AI. Research Questions: To what extent do students differ on Theory of Planned Behaviour (TPB) variables? What predicts intention to behave with academic integrity among senior nursing students in clinical practice across three different Canadian Schools of Nursing? Method: The TPB framework, an elicitation (n=30) and two pilot studies (n=59, n=29) resulted in the development of a 38 question (41-item) self-report survey (Miron Academic Integrity Nursing Survey—MAINS: α>0.70) that was administered to Year 3 and 4 students (N=339). Three predictor variables (attitude, subjective norm, perceived behavioural control) were measured with students’ intention to behave with AI in clinical. Age, sex, year of study, program stream, students’ understanding of AI policies, and locations where students accessed AI information were also measured. Results: Hierarchical multiple regression analyses revealed that background, site, and TPB variables explained 32.6% of the variance in intention to behave with academic integrity. The TPB variables explained 26.8% of the variance in intention after controlling for background and site variables. In the final model, only the TPB predictor variables were statistically significant with Attitude having the highest beta value (beta=0.35, p<0.001), followed by Subjective Norm (beta=0.21, p<0.001) and Perceived Behavioural Control (beta=0.12, p<0.02). Conclusion: Student attitude is the strongest predictor to intention to behave with AI in clinical practice and efforts to positively influence students’ attitudes need to be a focus for schools, curricula, and clinical educators. Opportunities for future research should include replicating the current study with students enrolled in other professional programs and intervention studies that examine the effectiveness of specific endeavours to promote AI in practice.
Resumo:
Traditionally, importance has been measured using subjective measures. The present thesis explores the possibility of a second type of importance, designated as “associative importance”. A new measure, the IIAT, was designed to capture the strength of association between an object and the attribute of importance. This thesis then evaluated the validity of the IIAT via an intervention paradigm in 2 studies, and by using the measure to predict a memory outcome in 2 other studies. Subjective measures of importance were also included in these studies and correlations between subjective measures and IIAT results were examined. Across all 4 studies, subjective-objective correlations were weak to modest and non-significant. The intervention studies provided promising evidence that interventions do affect associative importance as measured by the IIAT. The prediction studies provided somewhat mixed, but encouraging evidence that the IIAT may be able to predict memory performance. Notably, subjective measures were not able to predict memory performance at all, whereas the IIAT was able to predict some memory indices. Overall, there is some evidence supporting the existence of an associative importance construct, and that the IIAT provides valid results that are nonetheless different from that of subjective measures of attitude importance.
Resumo:
Spectral unmixing (SU) is a technique to characterize mixed pixels of the hyperspectral images measured by remote sensors. Most of the existing spectral unmixing algorithms are developed using the linear mixing models. Since the number of endmembers/materials present at each mixed pixel is normally scanty compared with the number of total endmembers (the dimension of spectral library), the problem becomes sparse. This thesis introduces sparse hyperspectral unmixing methods for the linear mixing model through two different scenarios. In the first scenario, the library of spectral signatures is assumed to be known and the main problem is to find the minimum number of endmembers under a reasonable small approximation error. Mathematically, the corresponding problem is called the $\ell_0$-norm problem which is NP-hard problem. Our main study for the first part of thesis is to find more accurate and reliable approximations of $\ell_0$-norm term and propose sparse unmixing methods via such approximations. The resulting methods are shown considerable improvements to reconstruct the fractional abundances of endmembers in comparison with state-of-the-art methods such as having lower reconstruction errors. In the second part of the thesis, the first scenario (i.e., dictionary-aided semiblind unmixing scheme) will be generalized as the blind unmixing scenario that the library of spectral signatures is also estimated. We apply the nonnegative matrix factorization (NMF) method for proposing new unmixing methods due to its noticeable supports such as considering the nonnegativity constraints of two decomposed matrices. Furthermore, we introduce new cost functions through some statistical and physical features of spectral signatures of materials (SSoM) and hyperspectral pixels such as the collaborative property of hyperspectral pixels and the mathematical representation of the concentrated energy of SSoM for the first few subbands. Finally, we introduce sparse unmixing methods for the blind scenario and evaluate the efficiency of the proposed methods via simulations over synthetic and real hyperspectral data sets. The results illustrate considerable enhancements to estimate the spectral library of materials and their fractional abundances such as smaller values of spectral angle distance (SAD) and abundance angle distance (AAD) as well.