2 resultados para statistical distribution
em QSpace: Queen's University - Canada
Resumo:
We report on a study conducted to extend our knowledge about the process of gaining a mental representation of music. Several studies, inspired by research on the statistical learning of language, have investigated statistical learning of sequential rules underlying tone sequences. Given that the mental representation of music correlates with distributional properties of music, we tested whether participants are able to abstract distributional information contained in tone sequences to form a mental representation. For this purpose, we created an unfamiliar music genre defined by an underlying tone distribution, to which 40 participants were exposed. Our stimuli allowed us to differentiate between sensitivity to the distributional properties contained in test stimuli and long term representation of the distributional properties of the music genre overall. Using a probe tone paradigm and a two-alternative forced choice discrimination task, we show that listeners are able to abstract distributional properties of music through mere exposure into a long term representation of music. This lends support to the idea that statistical learning is involved in the process of gaining musical knowledge.
Resumo:
The Dirichlet distribution is a multivariate generalization of the Beta distribution. It is an important multivariate continuous distribution in probability and statistics. In this report, we review the Dirichlet distribution and study its properties, including statistical and information-theoretic quantities involving this distribution. Also, relationships between the Dirichlet distribution and other distributions are discussed. There are some different ways to think about generating random variables with a Dirichlet distribution. The stick-breaking approach and the Pólya urn method are discussed. In Bayesian statistics, the Dirichlet distribution and the generalized Dirichlet distribution can both be a conjugate prior for the Multinomial distribution. The Dirichlet distribution has many applications in different fields. We focus on the unsupervised learning of a finite mixture model based on the Dirichlet distribution. The Initialization Algorithm and Dirichlet Mixture Estimation Algorithm are both reviewed for estimating the parameters of a Dirichlet mixture. Three experimental results are shown for the estimation of artificial histograms, summarization of image databases and human skin detection.