2 resultados para software-defined networking (SDN)

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been proposed that the field of appropriate technology (AT) - small-scale, energy efficient and low-cost solutions, can be of tremendous assistance in many of the sustainable development challenges, such as food and water security, health, shelter, education and work opportunities. Unfortunately, there has not yet been a significant uptake of AT by organizations, researchers, policy makers or the mainstream public working in the many areas of the development sector. Some of the biggest barriers to higher AT engagement include: 1) AT perceived as inferior or ‘poor persons technology’, 2) questions of technological robustness, design, fit and transferability, 3) funding, 4) institutional support, as well as 5) general barriers associated with tackling rural poverty. With the rise of information and communication technologies (ICTs) for online networking and knowledge sharing, the possibilities to tap into the collaborative open-access and open-source AT are growing, and so is the prospect for collective poverty reducing strategies, enhancement of entrepreneurship, communications, education and a diffusion of life-changing technologies. In short, the same collaborative philosophy employed in the success of open source software can be applied to hardware design of technologies to improve sustainable development efforts worldwide. To analyze current barriers to open source appropriate technology (OSAT) and explore opportunities to overcome such obstacles, a series of interviews with researchers and organizations working in the field of AT were conducted. The results of the interviews confirmed the majority of literature identified barriers, but also revealed that the most pressing problem for organizations and researchers currently working in the field of AT is the need for much better communication and collaboration to share the knowledge and resources and work in partnership. In addition, interviews showcased general receptiveness to the principles of collaborative innovation and open source on the ground level. A much greater focus on networking, collaboration, demand-led innovation, community participation, and the inclusion of educational institutions through student involvement can be of significant help to build the necessary knowledge base, networks and the critical mass exposure for the growth of appropriate technology.