1 resultado para scenario clustering
em QSpace: Queen's University - Canada
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (25)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (42)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (145)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (47)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (64)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (31)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (7)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Earth Simulator Research Results Repository (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Glasgow Theses Service (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (15)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (13)
- Nottingham eTheses (1)
- Open University Netherlands (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Escola Nacional de Administração Pública (ENAP) (5)
- Repositório da Produção Científica e Intelectual da Unicamp (30)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (15)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (11)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (36)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (33)
- Université de Montréal (1)
- Université de Montréal, Canada (2)
- University of Michigan (5)
- University of Queensland eSpace - Australia (83)
- University of Southampton, United Kingdom (2)
- WestminsterResearch - UK (1)
Resumo:
Strategic supply chain optimization (SCO) problems are often modelled as a two-stage optimization problem, in which the first-stage variables represent decisions on the development of the supply chain and the second-stage variables represent decisions on the operations of the supply chain. When uncertainty is explicitly considered, the problem becomes an intractable infinite-dimensional optimization problem, which is usually solved approximately via a scenario or a robust approach. This paper proposes a novel synergy of the scenario and robust approaches for strategic SCO under uncertainty. Two formulations are developed, namely, naïve robust scenario formulation and affinely adjustable robust scenario formulation. It is shown that both formulations can be reformulated into tractable deterministic optimization problems if the uncertainty is bounded with the infinity-norm, and the uncertain equality constraints can be reformulated into deterministic constraints without assumption of the uncertainty region. Case studies of a classical farm planning problem and an energy and bioproduct SCO problem demonstrate the advantages of the proposed formulations over the classical scenario formulation. The proposed formulations not only can generate solutions with guaranteed feasibility or indicate infeasibility of a problem, but also can achieve optimal expected economic performance with smaller numbers of scenarios.