2 resultados para resumption

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PAWP, postacrosomal sheath WW domain binding protein, is a novel sperm protein identified as a candidate sperm borne, oocyte-activating factor (SOAF). PAWP induces both early and later egg activation events including meiotic resumption, pronuclear formation and egg cleavage. Based on the fact that calcium increase is universally accepted as the sole requirement for egg activation, we hypothesized that PAWP is an upstream regulator of the calcium signaling pathway during fertilization. Intracellular calcium increase was detected by two-photon laser scanning fluorescence microscopy following microinjection of recombinant PAWP into Xenopus oocytes, bolstering our hypothesis and suggesting the involvement of a novel PAWP-mediated signaling pathway during fertilization. The N-terminal of PAWP shares a high homology to WW domain binding protein while the C-terminal half contains a functional PPXY motif, which allows it to interact with group I WW domain proteins. These structural considerations together with published data indicating that PPXY synthetic peptide derived from PAWP inhibits ICSI-induced fertilization led to the hypothesis that PAWP triggers egg activation by binding to a group I WW domain protein in the oocyte. By far-Western analysis of oocyte cytoplasmic fraction, PAWP was found to bind to a 52 kDa protein. The competitive inhibition studies with PPXY synthetic peptide, WW domain constructs, and their point mutants demonstrated that the interaction between PAWP and its binding partner is specifically via the PPXY-WW domain module. The 52 kDa protein band crossreacted with antibodies against group I WW domain protein YAP in Western blot assay, indicating that this 52 kDa PAWP binding partner is either YAP or a YAP-related protein. In addition, the far-Western competitive inhibition studies with recombinant GST fusion protein YAP and another WW domain-containing protein, TAZ, demonstrated that the binding of PAWP to its binding partner was significantly reduced by TAZ, providing evidence that TAZ could be the 52 kDa protein candidate. Mass spectrometry was employed to identify this PAWP binding partner candidate. However, due to the low abundance of the candidate protein and the complexity of the sample, several strategies are still needed to enrich this protein. This study correlates PAWP induced meiotic resumption and calcium efflux at fertilization and uncovers a 52 kDa candidate WW domain protein in the oocyte cytoplasm that most likely interacts with PAWP to trigger egg activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful fertilization depends upon the activation of metaphase II arrested oocytes by sperm-borne oocyte activating factor (SOAF). Failure of oocyte activation is considered as the cause of treatment failure in a proportion of infertile couples. SOAF induces the release of intracellular calcium in oocyte which leads to meiotic resumption and pronuclear formation. Calcium release is either in the form of single calcium transient in echinoderm and amphibian oocytes or several calcium oscillations in ascidian and mammalian oocytes. Although the SOAF attributes are established, it is not clear which sperm protein(s) play such role. Sperm postacrosomal WW binding protein (PAWP) satisfies a developmental criteria set for a candidate SOAF. This study shows that recombinant human PAWP protein or its transcript acts upstream of calcium release and fully activates the amphibian and mammalian oocytes. Interference trials provided evidence for the first time that PAWP mediates sperm-induced intracellular calcium release through a PPXY/WWI domain module in Xenopus, mouse and human oocytes. Clinical applications of PAWP were further investigated by prospective study on the sperm samples from patients undergoing intracytoplasmic sperm injection (ICSI). PAWP expression level, analyzed by flow cytometry, was correlated to ICSI success rate and embryonic development. This study also explored the developmental expression of the other SOAF candidate, PLCζ in male reproductive system and its function during fertilization. Our findings showed for the first time that PLCζ most likely binds to the sperm head surface during epididymal passage and is expressed in epididymis. We demonstrated that PLCζ is also compartmentalized early in spermiogenesis and thus could play an important role during spermiogenesis. Detailed analysis of in vitro fertilization revealed that PLCζ disappears from sperm head during acrosome reaction and is not detectable during sperm incorporation into the oocyte cytoplasm. In conclusion, this dissertation provides evidence for the essential non-redundant role of sperm PAWP in amphibian and mammalian fertilization; recommends PAWP as a biomarker for prediction of ICSI outcomes in infertile couples; and proposes that sperm PLCζ may have functions other than inducing oocyte activation during fertilization.