2 resultados para radiographic apex

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eastern Canadian Arctic is home to Canada’s largest Indigenous population, which depends on local freshwater sources for drinking water. However, small watersheds have rarely been analyzed for long-term hydrologic response to changing climate. This study aims to address this issue by examining the Apex River, a small watershed with a long hydroclimatic record, near Iqaluit, Nunavut. Particular emphasis was placed on the long-term changes in climate and river discharge, and the seasonal variability of water sources between two snapshots in time, 1983 and 2013. Long-term hydrological data were obtained from gauge station 10UH002, operated by Environment and Climate Change Canada, and long-term meteorological data were acquired from Environment Canada–operated stations near Iqaluit Airport. Breakpoint analysis suggested that long-term mean annual surface air temperatures have increased since 1994. In contrast, no long-term total precipitation or annual discharge changes were observed. However, river flow initiation and cessation analyses of the Apex River flow season indicates that flow extended into the autumn since the 2000s. The 2013 flow season lasted 44 days longer than the 1983 flow season. Systematic river sampling was undertaken throughout the 2013 thaw season to determine contributing proportions of event (snowmelt or rainfall) and pre-event (baseflow) water to river runoff. Results from the stable isotope hydrograph separation for 2013 were compared to findings for 1983. Snow was the main source of water to the river during the snowmelt period in 1983 and 2013, however baseflow was still an important contributor. Although there was high similarity of water sources early in the season in 1983 and 2013, the two years differed during the autumn. In 2013 there was a high rainfall runoff response that was not present in 1983, suggesting high release of late-season sub-surface water storage and an increased sensitivity to late-season rainfall events in 2013. This research provides insights into the hydrologic response of the Apex River to long-term climatic change, and highlights the need for high-quality precipitation and discharge data for effective long-term hydrological assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Transient ischemic attack (TIA) is a condition causing focal neurological deficits lasting less than 24hrs. TIA patients present similarly to other conditions with rapid onset of neurological symptoms such as migraine. The accurate diagnosis of TIA is critical because it serves as a warning for subsequent stroke. Furthermore, cognitive deficit associated with TIA may predict the development of dementia. Therefore, characterizing the cognitive symptoms of TIA patients and discriminating these patients from those with similar symptoms is important for proper diagnosis and treatment. Currently the diagnosis of TIA is made on clinical and radiographic evidence. Robotic assessment, with instruments such as the KINARM, may improve the identification of cognitive impairment in TIA patients. Methods: In this prospective cohort study, two KINARM tests, trail making task (TMT) and spatial span task (SST), were used to detect cognitive deficits. Two study groups were made. The TIA group was tested at 5 time points over the span of a year. The migraine active control group had one initial visit and another a year later. Both of these groups were compared to a normative database of approximately 400 healthy volunteers. From this database age and sex matched normative data was used to calculate Z-scores for the TMT. The Montreal Cognitive Assessment (MoCA) was also administered to both groups. Results: 31 participants were recruited, 20 TIA group and 11 active controls (mean ± SD age= 66 ± 11.3 and 62 ± 14.5). There was no significant difference in TIA and active control group MoCA scores. The TMT was able to detect cognitive impairment in TIA and migraine group. Also, both KINARM tasks could detect significant differences in performance between TIA and migraine patients while the MoCA could not. Changes in TIA and migraine performance on the MoCA, TMT, and SST were observed. Conclusions: The robotic KINARM exoskeleton can be used to assess cognitive deficits in TIA patients.