2 resultados para radioactive C-9-ion beam
em QSpace: Queen's University - Canada
Resumo:
Electron beam lithography (EBL) and focused ion beam (FIB) methods were developed in house to fabricate nanocrystalline nickel micro/nanopillars so to compare the effect of fabrication on plastic yielding. EBL was used to fabricate 3 μm and 5 μm thick poly-methyl methacrylate patterned substrates in which nickel pillars were grown by electroplating with height to diameter aspect ratios from 2:1 to 5:1. FIB milling was used to reduce larger grown pillars to sizes similar to EBL grown pillars. X-ray diffraction, electron back-scatter diffraction, scanning electron microscopy, and FIB imaging were used to characterize the nickel pillars. The measured grain size of the pillars was 91±23 nm, with strong <110> and weaker <111> and <110> crystallographic texture in the growth. Load-controlled compression tests were conducted using a MicroMaterials nano-indenter equipped with a 10 μm flat punch at constant rates from 0.0015 to 0.03 mN/s on EBL grown pillars, and 0.0015 and 0.015 mN/s on FIB-milled pillars. The measured Young’s modulus ranged from 55 to 350 GPa for all pillars, agreeing with values in the literature. EBL grown pillars exhibited stochastic strain-bursts at slow loading rates, attributed to local micro yield events, followed by work hardening. Sharp yield points were also observed and attributed to the gold seed layer de-bonding between the nickel pillar and substrate due to the shear stress associated with end effects that arise from the substrate constraint. The onset of yield ranged from 108 to 1800 MPa, which is greater than bulk nickel, but within values given in the literature. FIB-milled pillars demonstrated stochastic yield behaviour at all loading rates tested, yielding between 320 and 625 MPa. Deformation was apparent at FIB-milled pillar tops, where the smallest cross-sectional area was measured, but still exhibited superior yield strength to bulk nickel. The gallium damage at the outer surface of the pillars likely aids in dislocation nucleation and plasticity, leading to lower yield strengths than for the EBL pillars. Thermal drift, substrate effects, and noise due to vibrations within the indenter system contributed to variance and inconsistency in the data.
Resumo:
Molecular beam cooled HCl was state selected by two-photon excitation of the V (1) summation operator(0(+)) [v=9,11-13,15], E (1) summation operator(0(+)) [v=0], and g (3) summation operator(-)(0(+)) [v=0] states through either the Q(0) or Q(1) lines of the respective (1,3) summation operator(0(+))<--<--X (1) summation operator(0(+)) transition. Similarly, HBr was excited to the V (1) summation operator(0(+)) [v=m+3, m+5-m+8], E (1) summation operator(0(+)) [v=0], and H (1) summation operator(0(+)) [v=0] states through the Q(0) or Q(1) lines. Following absorption of a third photon, protons were formed by three different mechanisms and detected using velocity map imaging. (1) H(*)(n=2) was formed in coincidence with (2)P(i) halogen atoms and subsequently ionized. For HCl, photodissociation into H(*)(n=2)+Cl((2)P(12)) was dominant over the formation of Cl((2)P(32)) and was attributed to parallel excitation of the repulsive [(2) (2)Pi4llambda] superexcited (Omega=0) states. For HBr, the Br((2)P(32))Br((2)P(12)) ratio decreases with increasing excitation energy. This indicates that both the [(3) (2)Pi(12)5llambda] and the [B (2) summation operator5llambda] superexcited (Omega=0) states contribute to the formation of H(*)(n=2). (2) For selected intermediate states HCl was found to dissociate into the H(+)+Cl(-) ion pair with over 20% relative yield. A mechanism is proposed by which a bound [A (2) summation operatornlsigma] (1) summation operator(0(+)) superexcited state acts as a gateway state to dissociation into the ion pair. (3) For all intermediate states, protons were formed by dissociation of HX(+)[v(+)] following a parallel, DeltaOmega=0, excitation. The quantum yield for the dissociation process was obtained using previously reported photoionization efficiency data and was found to peak at v(+)=6-7 for HCl and v(+)=12 for HBr. This is consistent with excitation of the repulsive A(2) summation operator(12) and (2) (2)Pi states of HCl(+), and the (3) (2)Pi state of HBr(+). Rotational alignment of the Omega=0(+) intermediate states is evident from the angular distribution of the excited H(*)(n=2) photofragments. This effect has been observed previously and was used here to verify the reliability of the measured spatial anisotropy parameters.