2 resultados para quantitative study
em QSpace: Queen's University - Canada
Resumo:
Previous work has shown that thrombin activatable fibrinolysis inhibitor (TAFI) was unable to prolong lysis of purified clots in the presence of Lys-plasminogen (Lys-Pg), indicating a possible mechanism for fibrinolysis to circumvent prolongation mediated by activated TAFI (TAFIa). Therefore, the effects of TAFIa on Lys-Pg activation and Lys-plasmin (Lys-Pn) inhibition by antiplasmin (AP) were quantitatively investigated using a fluorescently labeled recombinant Pg mutant which does not produce active Pn. High molecular weight fibrin degradation products (HMW-FDPs), a soluble fibrin surrogate that models Pn modified fibrin, treated with TAFIa decreased the catalytic efficiency (kcat/Km) of 5IAF-Glu-Pg cleavage by 417-fold and of 5IAF-Lys-Pg cleavage by 55-fold. A previously devised intact clot system was used to measure the apparent second order rate constant (k2) for Pn inhibition by AP over time. While TAFIa was able to abolish the protection associated with Pn modified fibrin in clots formed with Glu-Pg, it was not able to abolish the protection in clots formed with Lys-Pg. However, TAFIa was still able to prolong the lysis of clots formed with Lys-Pg. TAFIa prolongs clot lysis by removing the positive feedback loop for Pn generation. The effect of TAFIa modification of the HMW-FDPs on the rate of tissue type plasminogen activator (tPA) inhibition by plasminogen activator inhibitor type 1 (PAI-1) was investigated using a previously devised end point assay. HMW-FDPs decreased the k2 for tPA inhibition rate by 3-fold. Thus, HMW-FDPs protect tPA from PAI-1. TAFIa treatment of the HMW-FDPs resulted in no change in protection. Vitronectin also did not appreciably affect tPA inhibition by PAI-1. Pg, in conjunction with HMW-FDPs, decreased the k2 for tPA inhibition by 30-fold. Hence, Pg, when bound to HMW-FDPs, protects tPA by an additional 10-fold. TAFIa treatment of the HMW-FDPs completely removed this additional protection provided by Pg. In conclusion, an additional mechanism was identified whereby TAFIa can prolong clot lysis by increasing the rate of tPA inhibition by PAI-1 by eliminating the protective effects of Pn-modified fibrin and Pg. Because TAFIa can suppress Lys-Pg activation but cannot attenuate Lys-Pn inhibition by AP, the Glu- to Lys-Pg/Pn conversion is able to act as a fibrinolytic switch to ultimately lyse the clot.
Resumo:
The coagulation and fibrinolytic systems are linked by the thrombin-thrombomodulin complex which regulates each system through activation of protein C and TAFI, respectively. We have used novel assays and techniques to study the enzymology and biochemistry of TAFI and TAFIa, to measure TAFI activation in hemophilia A and protein C deficiency and to determine if enhancing TAFI activation can improve hemostasis in hemophilic plasma and whole blood. We show that TAFIa not TAFI attenuates fibrinolysis in vitro and this is supported by a relatively high catalytic efficiency (16.41μM-1s-1) of plasminogen binding site removal from fibrin degradation products (FDPs) by TAFIa. Since the catalytic efficiency of TAFIa in removing these sites is ~60-fold higher than that for inflammatory mediators such as bradykinin it is likely that FDPs are a physiological substrate of TAFIa. The high catalytic efficiency is primarily a result of a low Km which can be explained by a novel mechanism where TAFIa forms a binary complex with plasminogen and is recruited to the surface of FDPs. The low Km also suggests that TAFIa would effectively cleave lysines from FDPs during the early stages of fibrinolysis (i.e. at low concentrations of FDPs). Since individuals with hemophilia suffer from premature fibrinolysis as a result of insufficient TAFI activation we quantified TAFI activation in whole blood from hemophilic subjects. Both the rate of activation and the area under the TAFI activation time course (termed TAFIa potential) was determined to be reduced in hemophilia A and the TAFIa potential was significantly and inversely correlated with the clinical bleeding iii phenotype. Using a novel therapeutic strategy, we used soluble thrombomodulin to increase TAFI activation which improved the clot lysis time in factor VIII deficient human plasma and hemophilic dog plasma as well as hemophilic dog blood. Finally, we briefly show in a biochemical case study that TAFI activation is enhanced in protein C deficiency and when afflicted individuals are placed on Warfarin anticoagulant therapy, TAFI activation is reduced. Since TAFIa stabilizes blood clots, this suggests that reducing TAFI activation or inhibiting TAFIa may help restore blood flow in vessels with pathological thrombosis.