2 resultados para phenotypic transgression

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of a functional nervous system requires that neuronal cells and axons navigate precisely to their appropriate targets. The Eph Receptor Tyrosine Kinases (RTKs) and their ephrin ligands have emerged as one of the important guidance cues for neuronal and axon navigation. However, the molecular mechanisms of how Eph RTKs regulate these processes are still incomplete. The purpose of this work was to contribute to the understanding of how Eph receptors regulate axon guidance by identifying and characterizing components of the Caenorhabditis elegans Eph RTK (VAB-1) signaling pathway. To achieve this objective I utilized a hyper active form of the VAB-1 Eph RTK (MYR-VAB-1) that caused penetrant axon guidance defects in the PLM mechanosensory neurons, and screened for suppressors of the MYR-VAB-1 phenotype. Through a candidate gene approach, I identified the adaptor NCK-1 as a downstream effector of VAB-1. Molecular and genetic analysis revealed that the nck-1 gene encodes for two isoforms (NCK-1A and NCK-1B) that share similar expression patterns in parts of the nervous system, but also have independent expression patterns in other tissues. Genetic rescue experiments showed that both NCK-1 isoforms can function in axon guidance, but each isoform also has specific functions. In vitro binding assays showed that NCK-1 binds to VAB-1 in a kinase dependent manner. In addition to NCK-1, WSP-1/N-WASP was also identified as an effector of VAB-1 signaling. Phenotypic analysis showed that nck-1 and wsp-1 mutants had PLM axon over extension defects similar to vab-1 animals. Furthermore, VAB-1, NCK-1 and WSP-1 formed a complex in vitro. Intriguingly, protein binding assays showed that NCK-1 can also bind to the actin regulator UNC-34/Ena, but genetic experiments suggest that unc-34 is an inhibitor of nck-1 function. Through various genetic and biochemical experiments, I provide evidence that VAB-1 can disrupt the NCK-1/UNC-34 complex, and negatively regulate UNC-34. Taken together, my work provides a model of how VAB-1 RTK signaling can inhibit axon extension. I propose that activated VAB-1 can prevent axon extension by inhibiting growth cone filopodia formation. This is accomplished by inhibiting UNC-34/Ena activity, and simultaneously activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human-induced selection on animals and plants has been highly influential throughout our history and resulted in both intentional benefits and unintended detriments. Fisheries-induced evolution (FIE) describes the unintended selection on wild fish populations by fishing that has resulted in the evolution of exploited populations. While the use of aquatic protected areas that exclude angling might be considered an evolutionarily-enlightened management approach to dealing with issues arising from FIE little is known about the effectiveness of this approach for maintaining the phenotypic diversity of traits in protected areas versus those outside of their boundaries. In species that exhibit parental care, including the largemouth bass (Micropterus salmoides), active nest guarding and aggression towards potential brood predators by males increases the survival of offspring. This aggression may render these individuals particularly vulnerable to capture via angling as a result of increased propensity to attack fishing lures near their nests. Relative levels of aggression by these males during the parental care period correlate with their vulnerability to angling year round. Inasmuch as this parental behavior is heritable, this selective removal of more aggressive individuals by anglers should drive population-average phenotypes towards lower levels of aggression. To assess the effectiveness of protected areas at mitigating FIE, I compared the nest guarding behaviours of wild, free-swimming male bass during the early nesting period for bass within and outside protected areas. I found that nesting males within long-standing fishing sanctuaries (>70 yrs) were more aggressive towards captive bluegill sunfish (Lepomis macrochirus) placed directly on their nests, and patrolled larger areas around their nests compared to bass outside of sanctuaries. Males within protected areas were more likely to strike at artificial fishing lures and more prone to capture during experimental angling events. Collectively, my findings suggest that recreational angling selects for individual bass with lower levels of parental care and aggression, and that the establishment of protected areas may mitigate potential FIE. The extent to which this phenomenon occurs in other species and systems likely depends on the reproductive strategies of the fishes being considered, their spatial ecology relative to sanctuary boundaries, and habitat quality within protected areas.