3 resultados para optical coating

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-photonic SOI Mach-Zehnder interferometers were coated with solid-phase micro-extraction materials derived from polydimethylsiloxane to enable sensing of volatile organic compounds of the BTEX class in air. A different coating based on functionalized mesoporous silicates is used to detect lead Pb(II) with a detection limit of <;; 100 ppb in water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A chemical sensor based on a coated long-period grating has been prepared and characterized. Designer coatings based on polydimethylsiloxane were prepared by the incorporation of diphenylsiloxane and titanium cross-linker in order to provide enhanced sensitivity for a variety of key environmental pollutants and optimal refractive index of the coating. Upon microextraction of the analyte into the polymer matrix, an increase in the refractive index of the coating resulted in a change in the attenuation spectrum of the long-period grating. The grating was interrogated using ring-down detection as a means to amplify the optical loss and to gain stability against misalignment and power fluctuations. Chemical differentiation of cyclohexane and xylene was achieved and a detection limit of 300 ppm of xylene vapour was realized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work I study the optical properties of helical particles and chiral sculptured thin films, using computational modeling (discrete dipole approximation, Berreman calculus), and experimental techniques (glancing angle deposition, ellipsometry, scatterometry, and non-linear optical measurements). The first part of this work focuses on linear optics, namely light scattering from helical microparticles. I study the influence of structural parameters and orientation on the optical properties of particles: circular dichroism (CD) and optical rotation (OR), and show that as a consequence of random orientation, CD and OR can have the opposite sign, compared to that of the oriented particle, potentially resulting in ambiguity of measurement interpretation. Additionally, particles in random orientation scatter light with circular and elliptical polarization states, which implies that in order to study multiple scattering from randomly oriented chiral particles, the polarization state of light cannot be disregarded. To perform experiments and attempt to produce particles, a newly constructed multi stage thin film coating chamber is calibrated. It enables the simultaneous fabrication of multiple sculptured thin film coatings, each with different structure. With it I successfully produce helical thin film coatings with Ti and TiO_{2}. The second part of this work focuses on non-linear optics, with special emphasis on second-harmonic generation. The scientific literature shows extensive experimental and theoretical work on second harmonic generation from chiral thin films. Such films are expected to always show this non-linear effect, due to their lack of inversion symmetry. However no experimental studies report non-linear response of chiral sculptured thin films. In this work I grow films suitable for a second harmonic generation experiment, and report the first measurements of non-linear response.