3 resultados para opioid receptor
em QSpace: Queen's University - Canada
Resumo:
Foreign pathogens are recognized by toll-like receptors (TLR), present on various immune cells such as professional antigen-presenting cells (pAPCs). On recognition of its ligand, these receptors activate pAPCs, which may in turn influence naïve CD8+ T cell activation and affect their abilities to clear viral infection. However, how TLR ligands (TLR-L) can regulate CD8+ T cell responses have not been fully elucidated. This thesis will focus on examining how the presence of components from foreign pathogens, e.g. viral or bacterial infection, can contribute to shaping host immunity during concurrent viral infections. Since nitric oxide (NO), an innate effector immune molecule, was recently suggested to regulate proteasome activity; we sought to examine if NO can influence MHC-I antigen presentation during viral infections. The data in this section of the thesis provides evidence that combined TLR engagement can alter the presentation of certain CD8+ epitopes due to NO-induced inhibition in proteasome activity. Taken together, the data demonstrate that TLR ligation can influence the adaptive immune response due to induction of specific innate effector molecules such as NO. Next, the influence of combined TLR engagement on CD8+ T cell immunodominance hierarchies during viral infections was examined. In this section, we established that dual TLR2 and TLR3 stimulation alters immunodominance hierarchies of LCMV epitopes as a result of reduced uptake of cell-associated antigens and reduced cross-presentation of NP396 consequently suppressing NP396-specific CD8+ T cell responses. These findings are significant as they highlight a new role for TLR ligands in regulating anti-viral CD8+ T cell responses through impairing cross-presentation of cell-associated antigens depending on the type of TLR present in the environment during infections. Finally, we addressed TLR ligand induced type I interferon production and the signalling pathways that regulate them in two different mouse macrophage populations – those derived from the spleen or bone marrow. In this study, we observed that concomitant TLR2 stimulation blocked the induction of type I IFN induced by TLR4 in bone marrow-derived macrophages, but not spleen-derived macrophages in SOCS3-dependent manner. Taken together, the data presented in this thesis have defined new facets of how anti-viral responses are regulated by TLR activation, especially if multiple receptors are engaged simultaneously.
Resumo:
The generation of a functional nervous system requires that neuronal cells and axons navigate precisely to their appropriate targets. The Eph Receptor Tyrosine Kinases (RTKs) and their ephrin ligands have emerged as one of the important guidance cues for neuronal and axon navigation. However, the molecular mechanisms of how Eph RTKs regulate these processes are still incomplete. The purpose of this work was to contribute to the understanding of how Eph receptors regulate axon guidance by identifying and characterizing components of the Caenorhabditis elegans Eph RTK (VAB-1) signaling pathway. To achieve this objective I utilized a hyper active form of the VAB-1 Eph RTK (MYR-VAB-1) that caused penetrant axon guidance defects in the PLM mechanosensory neurons, and screened for suppressors of the MYR-VAB-1 phenotype. Through a candidate gene approach, I identified the adaptor NCK-1 as a downstream effector of VAB-1. Molecular and genetic analysis revealed that the nck-1 gene encodes for two isoforms (NCK-1A and NCK-1B) that share similar expression patterns in parts of the nervous system, but also have independent expression patterns in other tissues. Genetic rescue experiments showed that both NCK-1 isoforms can function in axon guidance, but each isoform also has specific functions. In vitro binding assays showed that NCK-1 binds to VAB-1 in a kinase dependent manner. In addition to NCK-1, WSP-1/N-WASP was also identified as an effector of VAB-1 signaling. Phenotypic analysis showed that nck-1 and wsp-1 mutants had PLM axon over extension defects similar to vab-1 animals. Furthermore, VAB-1, NCK-1 and WSP-1 formed a complex in vitro. Intriguingly, protein binding assays showed that NCK-1 can also bind to the actin regulator UNC-34/Ena, but genetic experiments suggest that unc-34 is an inhibitor of nck-1 function. Through various genetic and biochemical experiments, I provide evidence that VAB-1 can disrupt the NCK-1/UNC-34 complex, and negatively regulate UNC-34. Taken together, my work provides a model of how VAB-1 RTK signaling can inhibit axon extension. I propose that activated VAB-1 can prevent axon extension by inhibiting growth cone filopodia formation. This is accomplished by inhibiting UNC-34/Ena activity, and simultaneously activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex.
Resumo:
Epidemiological studies have identified psychological stress as a significant risk factor in breast cancer. The stress response is regulated by the HPA axis in the brain and is mediated by glucocorticoid receptor (GR) signalling. It has been found that early life events can affect epigenetic programming of GR, and methylation of the GR promoter has been reported in colorectal tumourigenesis. Decreased GR expression has also been observed in breast cancer. In addition, it has been previously demonstrated that unliganded GR can serve as a direct activator of the BRCA1 promoter in mammary epithelial cells. We propose a model whereby methylation of the GR promoter in the breast significantly lowers GR expression, resulting in insufficient BRCA1 promoter activation and an increased risk of developing cancer. Antibody-based methylated DNA enrichment was followed by qPCR analysis (MeDIP-qPCR) in a novel assay developed to detect locus-specific methylation levels. It was found that 13% of primary breast tumours were hypermethylated at the GR proximal promoter whereas no methylation was detected in normal tissue. RT-PCR and 5’ RACE analysis identified exon 1B as the predominant alternative first exon in the breast. Tumours methylated near exon 1B had decreased GR expression compared to unmethylated samples, suggesting that this region is important for transcriptional regulation of GR. It was also determined that GR and BRCA1 expression was decreased in breast tumour compared to normal tissue. Furthermore, the relative expression of GR and BRCA1 measured by qRT-PCR was correlated in normal tissue but this association was not found in tumour tissue. From this, it appears that lower GR levels with associated decreased BRCA1 expression in tissues may be a predisposing factor for breast cancer. Based on these results we propose a role for GR as a potential tumour suppressor gene in the breast due to its association with BRCA1, also a tumour suppressor gene, as well as its consistently decreased expression in breast tumours and methylation of its proximal promoter in a subset of cancer patients.