2 resultados para non-contact laser scanning confocal microscopy
em QSpace: Queen's University - Canada
Resumo:
PAWP, postacrosomal sheath WW domain binding protein, is a novel sperm protein identified as a candidate sperm borne, oocyte-activating factor (SOAF). PAWP induces both early and later egg activation events including meiotic resumption, pronuclear formation and egg cleavage. Based on the fact that calcium increase is universally accepted as the sole requirement for egg activation, we hypothesized that PAWP is an upstream regulator of the calcium signaling pathway during fertilization. Intracellular calcium increase was detected by two-photon laser scanning fluorescence microscopy following microinjection of recombinant PAWP into Xenopus oocytes, bolstering our hypothesis and suggesting the involvement of a novel PAWP-mediated signaling pathway during fertilization. The N-terminal of PAWP shares a high homology to WW domain binding protein while the C-terminal half contains a functional PPXY motif, which allows it to interact with group I WW domain proteins. These structural considerations together with published data indicating that PPXY synthetic peptide derived from PAWP inhibits ICSI-induced fertilization led to the hypothesis that PAWP triggers egg activation by binding to a group I WW domain protein in the oocyte. By far-Western analysis of oocyte cytoplasmic fraction, PAWP was found to bind to a 52 kDa protein. The competitive inhibition studies with PPXY synthetic peptide, WW domain constructs, and their point mutants demonstrated that the interaction between PAWP and its binding partner is specifically via the PPXY-WW domain module. The 52 kDa protein band crossreacted with antibodies against group I WW domain protein YAP in Western blot assay, indicating that this 52 kDa PAWP binding partner is either YAP or a YAP-related protein. In addition, the far-Western competitive inhibition studies with recombinant GST fusion protein YAP and another WW domain-containing protein, TAZ, demonstrated that the binding of PAWP to its binding partner was significantly reduced by TAZ, providing evidence that TAZ could be the 52 kDa protein candidate. Mass spectrometry was employed to identify this PAWP binding partner candidate. However, due to the low abundance of the candidate protein and the complexity of the sample, several strategies are still needed to enrich this protein. This study correlates PAWP induced meiotic resumption and calcium efflux at fertilization and uncovers a 52 kDa candidate WW domain protein in the oocyte cytoplasm that most likely interacts with PAWP to trigger egg activation.
Resumo:
The chemical compositions, modal mineralogy, and textural variability of interstitial minerals in sandstones of the Athabasca Group strata in the vicinity of the McArthur River unconformity-related uranium deposit were characterized using a combination of short wave infrared spectroscopy (SWIR), lithogeochemistry, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and laser ablation mass spectrometry (LA-ICP-MS) to determine the residence sites of pathfinder trace elements. The importance of integrating in-situ mineral chemistry with whole-rock analyses resides in the possibility to establish the mineralogical and paragenetic context of geochemical signatures in defining the footprint of the deposit. Located in the Athabasca Basin, Saskatchewan, Canada, the deposit is situated below ~550 m of quartz arenitic sandstones that are strongly silicified between depths of approximately 200-400 m. The silicified layer exhibits significant control on the distribution of alteration minerals, and appears to have restricted both the primary and secondary dispersion of pathfinder trace elements, which include U, radiogenic Pb isotopes, V, Ni, Co, Cu, Mo, As, Zn, and REEs. Diagenetic background sandstones contain assemblages of illite, dickite, aluminum-phosphate-sulfate (APS) minerals, apatite, and Fe-Ti oxide minerals. Altered sandstones contain assemblages of Al-Mg chlorite (sudoite), alkali-deficient dravite, APS minerals, kaolinite, illite, and oxide minerals. Throughout the sandstones, APS minerals account for the majority of the Sr and LREE concentrations, whereas late pre-ore chlorite, containing up to 0.1 wt.% Ni, accounts for the majority of Ni concentrations. Cobalt, Cu, Mo, and Zn occur predominantly in cryptic sub-micron sulfide and sulfarsenide inclusions in clay mineral aggregates and in association with paragenetically-late Fe-Ti oxides. Uranium occurs predominantly in cryptic micro-inclusions associated with pyrite in late-stage quartz overgrowths, and with paragenetically late Fe-Ti oxide micro-inclusions in kaolinite. Additionally, up to 0.2 wt.% U is cryptically distributed in post-ore Fe-oxide veins. Early diagenetic apatite, monazite and apatite inclusions in detrital quartz, and detrital zircon also contribute significant U and HREE to samples analyzed with an aggressive leach such as Aqua Regia. Detailed LA-ICP-MS chemical mapping of interstitial assemblages, detrital grains, and cements provides new insights into the distribution and inventory of pathfinder elements in the footprint of the McArthur River uranium deposit.