3 resultados para near net shape

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laser-induced photodissociation of formaldehyde in the wavelength range 309<λ<330nm 309<λ<330nm has been investigated using H (Rydberg) atom photofragment translational spectroscopy. Photolysis wavelengths corresponding to specific rovibronic transitions in the A ˜ A 2 1 ←X ˜ A 1 1 ÃA21←X̃A11 2 1 0 4 3 0 201403 , 2 2 0 4 1 0 202401 , 2 2 0 4 3 0 202403 , 2 3 0 4 1 0 203401 , and 2 1 0 5 1 0 201501 bands of H 2 CO H2CO were studied. The total kinetic energy release spectra so derived can be used to determine partial rotational state population distributions of the HCO cofragment. HCO product state distributions have been derived following the population of various different N K a NKa levels in the A ˜ A 2 1 ÃA21 2 2 4 3 2243 and 2 3 4 1 2341 states. Two distinct spectral signatures are identified, suggesting competition between dissociation pathways involving the X ˜ A 1 1 X̃A11 and the a ˜ A 2 3 ãA23 potential energy surfaces. Most rovibrational states of H 2 CO(A ˜ A 2 1 ) H2CO(ÃA21) investigated in this work produceH+HCO(X ˜ A ′ 2 ) H+HCO(X̃A′2) photofragments with a broad kinetic energy distribution and significant population in high energy rotational states of HCO. Photodissociation via the A ˜ A 2 1 ÃA21 2 2 4 3 2243 1 1,1 11,1 (and 1 1,0 11,0 ) rovibronic states yields predominantly HCO fragments with low internal energy, a signature that these rovibronic levels are perturbed by the a ˜ A 2 3 ãA23 state. The results also suggest the need for further careful measurements of the H+HCO H+HCO quantum yield from H 2 CO H2CO photolysis at energies approaching, and above, the barrier to C–H bond fission on the a ˜ A 2 3 ãA23 potential energy surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on tectonic geomorphology and the response of the Ken River catchment to postulated tectonic forcing along a NE-striking monocline fold in the Panna region, Madhya Pradesh, India. Peninsular India is underlain by three northeast-trending paleotopographic ridges of Precambrian Indian basement, bounded by crustal-scale faults. Of particular interest is the Pokhara lineament, a crustal scale fault that defines the eastern edge of the Faizabad ridge, a paleotopographic high cored by the Archean Bundelkhand craton. The Pokhara lineament coincides with the monocline structure developed in the Proterozoic Vindhyan Supergroup rocks along the Bundelkhand cratonic margin. A peculiar, deeply incised meander-like feature, preserved along the Ken River where it flows through the monocline, may be intimately related to the tectonic regime of this system. This thesis examines 41 longitudinal stream profiles across the length of the monocline structure to identify any tectonic signals generated from recent surface uplift above the Pokhara lineament. It also investigates the evolution of the Ken River catchment in response to the generation of the monocline fold. Digital Elevation Models (DEM) from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to delineate a series of tributary watersheds and extract individual stream profiles which were imported into MATLAB for analysis. Regression limits were chosen to define distinct channel segments, and knickpoints were defined at breaks between channel segments where there was a discrete change in the steepness of the channel profile. The longitudinal channel profiles exhibit the characteristics of a fluvial system in transient state. There is a significant downstream increase in normalized steepness index in the channel profiles, as well as a general increase in concavity downstream, with some channels exhibiting convex, over-steepened segments. Normalized steepness indices and uppermost knickpoint elevations are on average much higher in streams along the southwest segment of the monocline compared to streams along the northeast segment. Most channel profiles have two to three knickpoints, predominantly exhibiting slope-break morphology. These data have important implications for recent surface uplift above the Pokhara lineament. Furthermore, geomorphic features preserved along the Ken River suggest that it is an antecedent river. The incised meander-like feature appears to be the abandoned river valley of a former Ken River course that was captured during the evolution of the landscape by what is the present day Ken River.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The roasting of gold-bearing arsenopyrite at Giant mine (Northwest Territories) between 1949 and 1999 released approximately 20,000 tonnes of toxic arsenic-bearing aerosols in the local aerial environment. Detailed examination of lake sediments, sediment porewaters, surface waters and lake hydrology sampled from three lakes of differing limnological characteristics was conducted in summer and winter conditions. Samples were analyzed for solid and dissolved elemental concentrations, speciation and mineralogy. The three lakes are located less than 5km from the mine roaster, and downwind, based on predominant wind direction. The objective of the study was to assess the controls on the mobility and fate of arsenic in these roaster-impacted subarctic lacustrine environments. Results show that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of industrial activities. The bulk of arsenic in sediments is contained in the form of secondary sulphide precipitates, with iron oxides hosting a minimal amount of arsenic near the surface-water interface. The presence of geogenic arsenic is likely contained as dilute impurities in common rock-forming minerals, and is not believed to be a significant source of arsenic to sediments, porewaters or lake waters. Furthermore, the well correlated depth-profiles of arsenic, antimony and gold in sediments may help reveal roaster impact. The soluble arsenic trioxide particles contained in sediments act as the primary source of arsenic into porewaters. Dissolved arsenic in reducing porewaters both precipitate as secondary sulphides in situ, and diffuse upwards into the overlying lake waters. Arsenic diffusion out of porewaters, combined with watercourse-driven residence time, are estimated to be the predominant mechanisms controlling arsenic concentrations in overlying lake waters. The sequestration of arsenic from porewaters as sulphide precipitates, in the study lakes, is not an effective process in keeping lake-water arsenic concentrations below guidelines for the protection of the freshwater environment and drinking water. Seasonal impacts on lake geochemistry derive from ice covering lake waters, cutting them off from of atmospheric oxygen, along with the exclusion of solutes from the ice. Such effects are limited in deep lakes but are can be an important factor controlling arsenic precipitation and mobility in ponds.