2 resultados para near infrared spectroscopy

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tourmaline from a gem-quality deposit in the Grenville province has been studied with X-ray diffraction, visible-near infrared spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, electron microprobe and optical measurements. The tourmaline is found within tremolite-rich calc-silicate pods hosted in marble of the Central Metasedimentary Belt. The crystals are greenish-greyish-brown and have yielded facetable material up to 2.09 carats in size. Using the classification of Henry et al. 2011 the tourmaline is classified as a dravite, with a representative formula shown to be (Na0.73Ca0.2380.032)(Mg2+2.913Fe2+0.057Ti4+0.030) (Al3+5.787Fe3+0.017Mg2+0.14)(Si6.013O18)(BO3)3(OH)3((OH,O)0.907F0.093). Rietveld analysis of powder diffraction data gives a = 15.9436(8) Å, c = 7.2126(7) Å and a unit cell volume of 1587.8 Å3. A polished thin section was cut perpendicular to the c-axis of one tourmaline crystal, which showed zoning from a dark brown core into a lighter rim into a thin darker rim and back into lighter zonation. Through the geochemical data, three key stages of crystal growth can be seen within this thin section. The first is the core stage which occurs from the dark core to the first colourless zone; the second is from this colourless zone increasing in brown colour to the outer limit before a sudden absence of colour is noted; the third is a sharp change from the end of the second and is entirely colourless. These events are the result of metamorphism and hydrothermal fluids resulting from nearby felsic intrusive plutons. Scanning electron microscope, and electron microprobe traverses across this cross-section revealed that the green colour is the result of iron present throughout the system while the brown colour is correlated with titanium content. Crystal inclusions in the tourmaline of chlorapatite, and zircon were identified by petrographic analysis and confirmed using scanning electron microscope data and occur within the third stage of formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visible and near-infrared laser light pulses were coupled into two different types of optical fiber cavities. One cavity consisted of a short strand of fiber waveguide that contained two identical fiber Bragg gratings. Another cavity was made using a loop of optical fiber. In either cavity ∼ 40 ps laser pulses, which were generated using a custom-built gainswitched diode laser, circulated for a large number of round trips. The optical loss of either cavity was determined from the ring-down times. Cavity ring-down spectroscopy was performed on 200 pL volumes of liquid samples that were injected into the cavities using a 100 μm gap in the fiber loop. A detection limit of 20 ppm of methylene blue dye in aqueous solution, corresponding to a minimum absorptivity of εC < 6 cm−1, was realized.