2 resultados para molecular mechanism
em QSpace: Queen's University - Canada
Resumo:
Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer development, metastasis and drug resistance. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ (transcriptional co-activator with PDZ-binding motif) is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in non-small cell lung cancer (NSCLC) and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Oncogenes upregulated in TAZ-overexpressing cells were identified with further validation. The most dramatically activated gene, Aldh1a1 (Aldehyde dehydrogenase 1 family member a1), a well-established CSC marker, showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEA domain (TEAD) family member. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis and drug resistance in the future.
Resumo:
The human ether-a-go-go-related gene (hERG) protein passes the rapidly activating delayed rectifier potassium channel (IKr), and malfunction of hERG protein/IKr is the primary cause of acquired long QT syndrome (LQTS). Autoimmune diseases are significantly correlated with prolonged QT intervals, for which autoantibodies have been implicated. The anti-Ro52 autoantibody is the most frequently evaluated, and importantly has been correlated with prolonged QT intervals. Pathological anti-Ro52-hERG interactions have been discussed as a mechanism for autoimmune disease-related LQTS. However, the mechanism is unclear, and it does not explain LQTS in autoimmune diseases which do not commonly express anti-Ro52. In this thesis, I investigated the effects of anti-Ro52 on hERG/IKr function. Through Western blot analysis, whole-cell patch-clamp, and immunofluorescence, I show that anti-Ro52 chronically (12 h) reduced hERG protein expression and hERG current by over 50%, but did not acutely block the channel. My work revealed a novel mechanism in which the Fc portion of anti-Ro52 interacts with the extracellular S5-pore linker of the channel to induce internalization through a tyrosine phosphorylation dependent pathway. This phenomenon extends beyond anti-Ro52 IgG, as other IgG, regardless of their antigen binding specificity, have the potential to reduce hERG expression/current. Rather, the ability of IgG to reduce hERG expression and current is dependent on the IgG subclass, as we show mouse IgG2A was the only mouse IgG subclass which reduced hERG expression. These results provide a novel explanation for autoimmune disease associated LQTS. It also has implications in the development of safe monoclonal antibody drugs.