4 resultados para model driven system, semantic representation, semantic modeling, enterprise system development

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a vision that allows the combined use of model-driven engineering, run-time monitoring, and animation for the development and analysis of components in real-time embedded systems. Key building block in the tool environment supporting this vision is a highly-customizable code generation process. Customization is performed via a configuration specification which describes the ways in which input is provided to the component, the ways in which run-time execution information can be observed, and how these observations drive animation tools. The environment is envisioned to be suitable for different activities ranging from quality assurance to supporting certification, teaching, and outreach and will be built exclusively with open source tools to increase impact. A preliminary prototype implementation is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Model-Driven Engineering (MDE), the developer creates a model using a language such as Unified Modeling Language (UML) or UML for Real-Time (UML-RT) and uses tools such as Papyrus or Papyrus-RT that generate code for them based on the model they create. Tracing allows developers to get insights such as which events occur and timing information into their own application as it runs. We try to add monitoring capabilities using Linux Trace Toolkit: next generation (LTTng) to models created in UML-RT using Papyrus-RT. The implementation requires changing the code generator to add tracing statements for the events that the user wants to monitor to the generated code. We also change the makefile to automate the build process and we create an Extensible Markup Language (XML) file that allows developers to view their traces visually using Trace Compass, an Eclipse-based trace viewing tool. Finally, we validate our results using three models we create and trace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model Driven Engineering uses the principle that code can automatically be generated from software models which would potentially save time and cost of development. By this methodology, a systems structure and behaviour can be expressed in more abstract, high level terms without some of the accidental complexity that the use of a general purpose language can bring. Models are the actual implementation of the system unlike in traditional software development where models are often used for documentation purposes only. However once the code is generated from the model, testing and debugging activities tend to happen on the code level and the model is not updated. We believe that monitoring on the model level could potentially facilitate quality assurance activities as the errors are detected in the early phase of development. In this thesis, we create a Monitoring Configuration for an open source model driven engineering tool called PapyrusRT in Eclipse. We support the run-time monitoring of UML-RT elements with a tracing tool called LTTng. We annotate the model with monitoring information to be used by the code generator for adding tracepoint statements for the corresponding elements. We provide the option of a timing specification to discover latency errors on the model. We validate the results by creating and tracing real time models in PapyrusRT.