2 resultados para mitochondrion-rich

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast rhomboid protease (Rbd1p) was found to act in the processing of Tic40 components in the yeast mitochondrion. Rhomboid protease was shown to have effects on the number of different Tic40 configurations displayed, the ratio of different configurations to one another and the targeting of Tic40 configurations within the yeast mitochondrion. The effects of Rbd1p on the ratio and targeting of different Tic40 configurations were also found to be dependent on the developmental stage of the yeast. Tic40 deletion constructs were expressed in yeast strains with active yeast rhomboid protease and in corresponding strains lacking Rbd1p. The processing of Tic40 differed between deletion constructs and between strains with and without yeast rhomboid protease. This indicates that rhomboid protease can affect the processing of Tic40 and the sequence of Tic40 can affect the activity of rhomboid protease with respect to Tic40. Tic40 is suspected to be involved in the regulation of plastid protein import. Rhomboid protease is shown here to affect the properties of Tic40 which have made it a candidate for a regulator of plastid protein import.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small proline-rich protein-2 (SPRR2) functions as a determinant of flexibility and permeability in the mature cornified envelope of the skin. SPRR2 is strongly upregulated by the commensal flora and may mediate signaling to differentiated epithelia of the small intestine and colon. Yet, SPRR2 function in the GI tract is largely unexplored. Using the Caco-2 model of intestinal epithelial differentiation along the crypt-villus axis, we hypothesized that SPRR2 would be preferentially expressed in post-confluent differentiated Caco-2 cells and examined SPRR2 regulation by the protein kinase A pathway (PKA) and short chain fatty acids (SCFAs). Differentiation-dependent SPRR2 expression was examined in cytoskeletal-, membrane-, and nuclear-enriched fractions by immunoblotting and confocal immunofluorescence. We studied the effect of SCFAs, known inducers of differentiation, on SPRR2 expression in pre-confluent undifferentiated Caco-2 cells and explored potential mechanisms involved in this induction using MAP kinase inhibitors. SPRR2 expression was also compared between HIEC crypt cells and 16 to 20 week primary fetal villus cells as well as in different segments in mouse small intestine and colon. We determined if SPRR2 is increased by gram negative bacteria such as S. typhimurium. SPRR2 expression increased in a differentiation-dependent manner in Caco-2 cells and was present in human fetal epithelial villus cells but absent in HIEC crypt cells. Differentiation-induced SPRR2 was down-regulated by 8-Br-cAMP as well as by forskolin/IBMX co-treatment. SPRR2 was predominantly cytoplasmic and did not accumulate in Triton X-100-insoluble cytoskeletal fractions. SPRR2 was present in the membrane- and nuclear-enriched fractions and demonstrated co-localization with F-actin at the apical actin ring. No induction was seen with the specific HDAC inhibitor trichostatin A, while SCFAs and the HDAC inhibitor SBHA all induced SPRR2. SCFA responses were inhibited by MAP kinase inhibitors SB203580 and U0126, thus suggesting that the SCFA effect may be mediated by orphan G-protein receptors GPR41 and GPR43. S. typhimurium induced SPRR2 in undifferentiated cells. We conclude that SPRR2 protein expression is associated with differentiated epithelia and is regulated by PKA signaling and by by-products of the bowel flora. This is the first report to establish an in vitro model to study the physiology and regulation of SPRR2.