4 resultados para lymphocytes T
em QSpace: Queen's University - Canada
Resumo:
Previous studies revealed that, upon exposure to hypoxia, tumour cells acquire resistance to the cytolytic activity of IL-2-activated lymphocytes. The MHC class I chain-related (MIC) molecules – comprised of MICA and MICB – are ligands for the activating NKG2D receptor on Natural Killer (NK) and CD8+ T cells. MIC-NKG2D interactions lead to the activation of NK and CD8+ T cells and the subsequent lysis of the tumour cells. The study also showed that the mechanism of the hypoxia-mediated immune escape involves the shedding of MIC, specifically MICA, from the tumour cell surface. The objective of the present study was to determine whether the shedding of MICA requires the expression of hypoxia inducible factor-1 (HIF-1), a transcription factor that regulates cellular adaptations to hypoxia. Exposure to hypoxia (0.5% O2 vs. 20% O2) led to the shedding of MIC from the surface of MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells as determined by flow cytometry. Knockdown of HIF-1α mRNA using siRNA technology resulted in inhibition of HIF-1α accumulation under hypoxic conditions as determined by Western blot analysis. Parallel study revealed that knockdown of HIF-1α also blocked the shedding of MICA from the surface of MDA-MB-231 cells exposed to hypoxia. These results indicate that HIF-1 is required for the hypoxia-mediated shedding of MICA and, consequently, that HIF-1 may play an important role in tumour immune escape. Ongoing studies aim to determine the HIF-1 target genes involved in the shedding of MICA under hypoxia.
Resumo:
Recently, a chronic idiopathic disease of the esophagus has emerged, which is now known as eosinophilic esophagitis (EoE). Incomplete knowledge regarding the pathogenesis of EoE has limited treatment options. EoE is known to be a Th2-type immune-mediated disorder. Based on previous studies in both patients and experimental models, it is possible that an abnormal reaction to antigen mediates the pathophysiology of EoE. In this thesis, symptoms and signs unique to EoE were identified by an age-matched, case-controlled study of 326 patients with EoE and gastroesophageal reflux disease. The molecular mechanisms involved in antigen detection in the esophagus, in relation to EoE were then investigated. Esophageal epithelial cells were found, for the first time, to be capable of acting as non-professional antigen presenting cells, with the ability to engulf, process and present antigen on MHC class II to T helper lymphocytes. Antigen presentation by esophageal epithelial cells was induced by interferon-γ, which is increased in biopsies from patients with EoE. Next, it was discovered that esophageal epithelial cell lines expressed functional toll-like receptor (TLR) 2 and TLR3, but in esophageal mucosal biopsies only infiltrating immune cells (including eosinophils) expressed TLR2 and TLR3. Finally, the potential involvement of IgE in the pathogenesis of esophageal inflammation was investigated. IgE in the esophagus was found to be present on mast cells, which are increased in density in the esophageal mucosae of patients with EoE and especially those with a history of atopy. Mechanisms of antigen detection may mediate the pathophysiology of EoE in the esophagus through antigen presentation by epithelial cells, detection by TLRs on immune cells and detection through IgE on mucosal mast cells. Together, these findings demonstrate that mechanisms of antigen detection may actually contribute to the pathophysiology of EoE. Through increased understanding of the mechanisms of EoE, the results of this thesis may contribute to future therapy.
Resumo:
Early pregnancy is characterized by complex interactions between blood vessels, leukocytes, and conceptus-derived trophoblasts within the gestational uterus. Uterine Natural Killer (uNK) cells become the most abundant leukocyte during decidualization and produce a wide array of angiogenic factors, yet little is known regarding their early pregnancy functions. To characterize the role(s) of uNK cells, whole mount in situ immunohistochemistry of live early implant sites was performed. A timecourse examination of murine early pregnancy (virgin, and gd4.5-9.5) implantation sites was performed. Comparison of Gd6.5, 8.5 and 9.5 implant sites from BALB/c+/+ controls (BALB/c) and BALB/c-Rag2-/-Il2rg-/- (alymphoid) identified anomalies that result from the absence of lymphocytes. In alymphoid decidua basalis, mesometrial angiogenesis was widespread but pruning of nascent vessels within alymphoid decidua basalis was deficient. As early gestation progressed, vessels of alymphoid decidua basalis showed no evidence for remodeling. Alymphoid implantation sites showed ~24h delay in uterine lumen closure and embryonic development. To determine if uNK cells would normalize the anomalies observed in alymphoid implantation sites, adoptive cell transfer of NK+ B- T- marrow to alymphoid mice was performed. All of the above anomalies were reversed by adoptive transfer of NK+B-T- marrow. My results suggest that uNK cells support vascular growth and development which ensures the decidua can support the growing conceptus early in pregnancy prior to formation and function of the placenta. Human decidual NK cells may fill similar roles and be important targets for strategies designed to correct intra-uterine growth restriction.
Resumo:
The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.