4 resultados para lymphocyte T CD8
em QSpace: Queen's University - Canada
Resumo:
Previous studies revealed that, upon exposure to hypoxia, tumour cells acquire resistance to the cytolytic activity of IL-2-activated lymphocytes. The MHC class I chain-related (MIC) molecules comprised of MICA and MICB are ligands for the activating NKG2D receptor on Natural Killer (NK) and CD8+ T cells. MIC-NKG2D interactions lead to the activation of NK and CD8+ T cells and the subsequent lysis of the tumour cells. The study also showed that the mechanism of the hypoxia-mediated immune escape involves the shedding of MIC, specifically MICA, from the tumour cell surface. The objective of the present study was to determine whether the shedding of MICA requires the expression of hypoxia inducible factor-1 (HIF-1), a transcription factor that regulates cellular adaptations to hypoxia. Exposure to hypoxia (0.5% O2 vs. 20% O2) led to the shedding of MIC from the surface of MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells as determined by flow cytometry. Knockdown of HIF-1 mRNA using siRNA technology resulted in inhibition of HIF-1 accumulation under hypoxic conditions as determined by Western blot analysis. Parallel study revealed that knockdown of HIF-1 also blocked the shedding of MICA from the surface of MDA-MB-231 cells exposed to hypoxia. These results indicate that HIF-1 is required for the hypoxia-mediated shedding of MICA and, consequently, that HIF-1 may play an important role in tumour immune escape. Ongoing studies aim to determine the HIF-1 target genes involved in the shedding of MICA under hypoxia.
Resumo:
Foreign pathogens are recognized by toll-like receptors (TLR), present on various immune cells such as professional antigen-presenting cells (pAPCs). On recognition of its ligand, these receptors activate pAPCs, which may in turn influence nave CD8+ T cell activation and affect their abilities to clear viral infection. However, how TLR ligands (TLR-L) can regulate CD8+ T cell responses have not been fully elucidated. This thesis will focus on examining how the presence of components from foreign pathogens, e.g. viral or bacterial infection, can contribute to shaping host immunity during concurrent viral infections. Since nitric oxide (NO), an innate effector immune molecule, was recently suggested to regulate proteasome activity; we sought to examine if NO can influence MHC-I antigen presentation during viral infections. The data in this section of the thesis provides evidence that combined TLR engagement can alter the presentation of certain CD8+ epitopes due to NO-induced inhibition in proteasome activity. Taken together, the data demonstrate that TLR ligation can influence the adaptive immune response due to induction of specific innate effector molecules such as NO. Next, the influence of combined TLR engagement on CD8+ T cell immunodominance hierarchies during viral infections was examined. In this section, we established that dual TLR2 and TLR3 stimulation alters immunodominance hierarchies of LCMV epitopes as a result of reduced uptake of cell-associated antigens and reduced cross-presentation of NP396 consequently suppressing NP396-specific CD8+ T cell responses. These findings are significant as they highlight a new role for TLR ligands in regulating anti-viral CD8+ T cell responses through impairing cross-presentation of cell-associated antigens depending on the type of TLR present in the environment during infections. Finally, we addressed TLR ligand induced type I interferon production and the signalling pathways that regulate them in two different mouse macrophage populations those derived from the spleen or bone marrow. In this study, we observed that concomitant TLR2 stimulation blocked the induction of type I IFN induced by TLR4 in bone marrow-derived macrophages, but not spleen-derived macrophages in SOCS3-dependent manner. Taken together, the data presented in this thesis have defined new facets of how anti-viral responses are regulated by TLR activation, especially if multiple receptors are engaged simultaneously.
Resumo:
Biologically active 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) binds the vitamin D receptor (VDR) to exert its effect on target cells. VDR expression is found in a number of immune cells including professional antigen-presenting cells such as dendritic cells. It has been found that the actions of 1,25-(OH)2D3 on the immune system are mainly immunosuppressive. The cross-presentation pathway allows for exogenously derived antigens to be presented by pAPCs on MHC-I molecules to CD8+ T cells. CD8+ T cell activation results in the expansion of epitope-specific T cell populations that confer host protection. These epitopes can be organized into an immunodominance hierarchy. Previous work demonstrated that introducing LCMV-NP via the cross-priming pathway significantly alters the immunodominance hierarchy of a subsequent LCMV infection. Building upon these observations, our study assessed the effects of LCMV-NP cross priming in the presence of a single dose of 1,25-(OH)2D3. Treatment with 1,25-(OH)2D3 was found to have biological effects in our model system. In vitro pAPCs were demonstrated to up-regulate IL-10 and CYP24A1 mRNA, in addition to the transactivation of cellular VDR, as demonstrated by a relocalization to the nuclear region. Mice treated with 1,25-(OH)2D3 were found to produce up-regulated IL-10 and CYP24A1 transcripts. Expression of VDR was increased at both the transcript and protein level. Our results demonstrate that a single dose of 1,25-(OH)2D3 does not affect the cross-priming pathway in this system. Treatment with 1,25-(OH)2D3 did not influence the ability of differentiated pAPCs to phagocytose or cross-present exogenous antigen to epitope-specific CD8+ T cells. Furthermore, 1,25-(OH)2D3 did not alter cross-priming or the establishment of the LCMV immunodominance hierarchy in vivo. By confirming that 1,25-(OH)2D3 does not suppress cross-priming in our model, our study helps to expand the understanding of the immunomodulatory role of exogenous 1,25-(OH)2D3 on the outcome of virus infection. Collectively, our data supports the observation that the role of 1,25-(OH)2D3 in the immune system is not always associated with suppressive effects.
Resumo:
The Fes protein tyrosine kinase is abundantly expressed in phagocytic immune cells, including tumor associated macrophages. Fes knockout mice (fes-/-) display enhanced sensitivity to LPS, and this was shown to be associated with increased NF-B signaling and TNF production from fes-/- macrophages. Interestingly, tumor onset in the mouse mammary tumor virus (MMTV-Neu) transgenic mouse model of breast cancer is significantly delayed in fes-/- mice, and this was associated with increased frequency of CD11b+ myeloid and CD3+ T cells in the premalignant mammary glands. Recent studies have also implicated Fes in cross-talk between MHC-I and the NF-B and IRF-3 pathways in macrophages. Signal 3, the production of inflammatory cytokines and Type I interferons downstream of NF-B and IRF-3 pathways in antigen presenting cells, is considered an important component of T-cell activation, after engagement of T cell receptor by MHC presented antigen (Signal 1) and co-receptors by their ligands (Signal 2). Using a lymphocytic choriomeningitis virus (LCMV) model of immune activation, I show that LPS stimulated fes-/- macrophages promote more robust activation of LCMV antigenspecific CD8+ T cells than wild type macrophages (fes+/+). Furthermore, LPS stimulated fes-/- macrophages showed increased phosphorylation of NF-B and IRF-3. I also showed that Fes colocalizes with MHC-I in dynamic vesicular structures within macrophages. These observations are consistent with a model where Fes regulates Signal 3 in antigen presenting cells through roles in cross-talk between MHC-I and the NF-kB and IRF-3 signaling pathways. This suggests that Fes plays an immune checkpoint role at the level of Signal 3, and that Fes inhibition could promote tumor immunity through increased Signal 3 driven T cell activation.