2 resultados para low rate speech coding
em QSpace: Queen's University - Canada
Resumo:
Climate change is occurring most rapidly in the Arctic where warming has been twice as fast as the rest of the globe over the last few decades. Arctic soils contain a vast store of carbon and warmer arctic soils may mediate current atmospheric CO2 concentrations and global warming trends. Warmer soils could increase nutrient availability to plants, leading to increased primary production and sequestration of CO2. Presumably because of these effects of warming on shrub ecosystems, shrubs have been expanding across the arctic over the last 50 years, Arctic shrub expansion may track or cause changes in nutrient cycling and availability that favour growth of larger, denser shrubs. This study aimed at measuring gross and net nitrogen cycling rates, major soil nitrogen and carbon pool sizes, and elucidating controls on nutrient cycling and availability between a mesic birch (Betula nana) hummock tundra ecosystem and an ecosystem of dense, tall, birch (B. nana) shrubs. Nitrogen cycling and availability was enhanced at the tall shrub ecosystem compared to the birch hummock ecosystem. Net nitrogen immobilization by microbes was approximately threefold greater at the tall shrub ecosystem. This was in part because of larger microbial biomass nitrogen and carbon (interpreted as a larger microbial community) at the tall shrub ecosystem. Nitrogen inputs via litter were significantly larger at the tall shrub ecosystem and were hypothesized to be the major contributor to the higher dissolved organic and inorganic nitrogen pools in the soil at the tall shrub ecosystem. The results from this study suggest a positive feedback mechanism between litter nitrogen inputs and the enhancement of nitrogen cycling and availability as a driver of shrub expansion across the Arctic.
Resumo:
Cyclododecane (CDD) is a waxy, solid cyclic hydrocarbon (C12H24) that sublimes at room temperature and possesses strong hydrophobicity. In paper conservation CDD is used principally as a temporary fixative of water-soluble media during aqueous treatments. Hydrophobicity, ease of reversibility, low toxicity, and absence of residues are reasons often cited for its use over alternative materials although the latter two claims continue to be debated in the literature. The sublimation rate has important implications for treatment planning as well as health and safety considerations given the dearth of reliable information on its toxicity and exposure limits. This study examined how the rate of sublimation is affected by fiber type, sizing, and surface finish as well as delivery in the molten phase and as a saturated solution in low boiling petroleum ether. The effect of warming the paper prior to application was also evaluated. Sublimation was monitored using gravimetric analysis after which samples were tested for residues with gas chromatography-flame ionization detection (GC-FID) to confirm complete sublimation. Water absorbency tests were conducted to determine whether this property is fully reestablished. Results suggested that the sublimation rate of CDD is affected minimally by all of the paper characteristics and application methods examined in this study. The main factors influencing the rate appear to be the thickness and mass of the CDD over a given surface area as well as temperature and ventilation. The GC-FID results showed that most of the CDD sublimed within several days of its disappearance from the paper surface regardless of the application method. Minimal changes occurred in the water absorbency of the samples following complete sublimation.