3 resultados para long-period fiber gratings

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An etched long-period grating was used as a refractive index sensor for vapours of four volatile organic compounds, i.e. m-xylene, cyclohexane, trichloroethylene and commercial gasoline. The sensitivity to the vapours was further increased by solid-phase microextraction into a coating made of polydimethylsiloxane (PDMS)/polymethyl-octylsiloxane (PMOS) co-polymer. By further amplification of the optical loss in an optical cavity made of two identical fiber-Bragg gratings and interrogation by phase-shift cavity ring-down spectroscopy we could detect and distinguish xylene (detection limit: 134ppm) from trichloroethylene (3300ppm), cyclohexane (1850ppm) and gasoline (10,500ppm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chemical sensor based on a coated long-period grating has been prepared and characterized. Designer coatings based on polydimethylsiloxane were prepared by the incorporation of diphenylsiloxane and titanium cross-linker in order to provide enhanced sensitivity for a variety of key environmental pollutants and optimal refractive index of the coating. Upon microextraction of the analyte into the polymer matrix, an increase in the refractive index of the coating resulted in a change in the attenuation spectrum of the long-period grating. The grating was interrogated using ring-down detection as a means to amplify the optical loss and to gain stability against misalignment and power fluctuations. Chemical differentiation of cyclohexane and xylene was achieved and a detection limit of 300 ppm of xylene vapour was realized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mach-Zehnder and Michelson interferometers using core-offset attenuators were demonstrated. As the relative offset direction of the two attenuators in the Mach-Zehnder interferometer can significantly affect the extinction ratio of the interference pattern, single core-offset attenuator-based sensors appear more robust and repeatable. A novel fiber Michelson interferometer refractive index (RI) sensor was subsequently realized by a single core-offset attenuator and a layer of ~ 500-nm gold coating. The device had a minimum insertion loss of 0.01 dB and maximum extinction ratio over 9 dB. The sensitivity (0.333 nm) of the new sensor to its surrounding RI change (0.01) was found to be comparable to that (0.252 nm) of an identical long period gratings pair Mach-Zehnder interferometric sensor, and its ease of fabrication makes it a low-cost alternative to existing sensing applications.