2 resultados para loading, hauling, and dumping
em QSpace: Queen's University - Canada
Resumo:
This paper describes the design, tuning, and extensive field testing of an admittance-based Autonomous Loading Controller (ALC) for robotic excavation. Several iterations of the ALC were tuned and tested in fragmented rock piles—similar to those found in operating mines—by using both a robotic 1-tonne capacity Kubota R520S diesel-hydraulic surface loader and a 14-tonne capacity Atlas Copco ST14 underground load-haul-dump (LHD) machine. On the R520S loader, the ALC increased payload by 18 % with greater consistency, although with more energy expended and longer dig times when compared with digging at maximum actuator velocity. On the ST14 LHD, the ALC took 61 % less time to load 39 % more payload when compared to a single manual operator. The manual operator made 28 dig attempts by using three different digging strategies, and had one failed dig. The tuned ALC made 26 dig attempts at 10 and 11 MN target force levels. All 10 11 MN digs succeeded while 6 of the 16 10 MN digs failed. The results presented in this paper suggest that the admittance-based ALC is more productive and consistent than manual operators, but that care should be taken when detecting entry into the muck pile
Resumo:
For the SNO+ neutrinoless double beta decay search, various backgrounds, ranging from impurities present naturally to those produced cosmogenically, must be understood and reduced. Cosmogenic backgrounds are particularly difficult to reduce as they are continually regenerated while exposed to high energy cosmic rays. To reduce these cosmogenics as much as possible the tellurium used for the neutrinoless double beta decay search will be purified underground. An analysis of the purification factors achievable for insoluble cosmogenic impurities found a reduction factor of $>$20.4 at 50\% C.L.. During the purification process the tellurium will come into contact with ultra pure water and nitric acid. These liquids both carry some cosmogenic impurities with them that could be potentially transferred to the tellurium. A conservative limit is set at $<$18 events in the SNO+ region of interest (ROI) per year as a result of contaminants from these liquids. In addition to cosmogenics brought underground, muons can produce radioactive isotopes while the tellurium is stored underground. A study on the rate at which muons produce these backgrounds finds an additional 1 event per year. In order to load the tellurium into the detector, it will be combined with 1,2-butanediol to form an organometallic complex. The complex was found to have minimal effect on the SNO+ acrylic vessel for 154 years.