2 resultados para immunosorbent

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to further investigate the role of pro-inflammatory cytokines in the pathogenesis of fetal cererbral white matter injury associated with chorioamnionitis by charaterizing the time course of the cytokine response in the pregnant guinea pig following a maternal inflammatory insult. Chorioamnionitis increases the risk for fetal brain injury. In the guinea pig, a threshold maternal inflammatory response must be reached for significant fetal brain injury to occur. However, a previous study demonstrated that, by seven days after an acute maternal inflammatory insult, cytokine levels in both maternal and fetal compartments are not different from controls. The purpose of this study, therefore, was to test the hypothesis that a significant cytokine response occurs within the first seven days following an acute maternal inflammatory response. Pregnant guinea pigs (n=34) were injected intraperitoneally with 100µg/kg lipopolysaccharide (LPS) at 70% gestation and euthanized at 24 hours, 48 hours or 5 days following endotoxin exposure. Control animals were euthanized at 70% gestation without exposure. Concentrations of interleukin-6, interleukin 1-β and tumour necrosis factor-α (IL-6, IL-1β, TNF-α) were quantified in the maternal serum and amniotic fluid by enzyme-linked immunosorbent assay. IL-6 and IL-1β concentrations were elevated in the maternal serum at 24 hours and returned to control levels by five days. In the amniotic fluid, IL-6 peaked at 48 hours and IL-1β at 24 hours. TNF-α levels were not significantly increased. A single maternal LPS injection produces transient increases in cytokine concentrations in the maternal serum and amniotic fluid. This further implicates the cytokines as potential mediators of fetal white matter damage. Although this response might not be sufficient to produce the brain injury itself, it may initiate harmful pro-inflammatory cytokine cascades, which could even continue to harm the fetus following delivery. A human diagnostic protocol was developed to assess the use of serial serum biomarkers, including IL-6 and TNF-α, in the prediction of histological chorioamnionitis. Preliminary analysis of the pilot study suggests that certain biomarkers might be worthy of further investigation in a larger-scale study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As human populations and resource consumption increase, it is increasingly important to monitor the quality of our environment. While laboratory instruments offer useful information, portable, easy to use sensors would allow environmental analysis to occur on-site, at lower cost, and with minimal operator training. We explore the synthesis, modification, and applications of modified polysiloxane in environmental sensing. Multiple methods of producing modified siloxanes were investigated. Oligomers were formed by using functionalized monomers, producing siloxane materials containing silicon hydride, methyl, and phenyl side chains. Silicon hydride-functionalized oligomers were further modified by hydrosilylation to incorporate methyl ester and naphthyl side chains. Modifications to the siloxane materials were also carried out using post-curing treatments. Methyl ester-functionalized siloxane was incorporated into the surface of a cured poly(dimethylsiloxane) film by siloxane equilibration. The materials containing methyl esters were hydrolyzed to reveal carboxylic acids, which could later be used for covalent protein immobilization. Finally, the siloxane surfaces were modified to incorporate antibodies by covalent, affinity, and adsorption-based attachment. These modifications were characterized by a variety of methods, including contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, dye labels, and 1H nuclear magnetic resonance spectroscopy. The modified siloxane materials were employed in a variety of sensing schemes. Volatile organic compounds were detected using methyl, phenyl, and naphthyl-functionalized materials on a Fabry-Perot interferometer and a refractometer. The Fabry-Perot interferometer was found to detect the analytes upon siloxane extraction by deformation of the Bragg reflectors. The refractometer was used to determine that naphthyl-functionalized siloxanes had elevated refractive indices, rendering these materials more sensitive to some analytes. Antibody-modified siloxanes were used to detect biological analytes through a solid phase microextraction-mediated enzyme linked immunosorbent assay (SPME ELISA). The SPME ELISA was found to have higher analyte sensitivity compared to a conventional ELISA system. The detection scheme was used to detect Escherichia coli at 8500 CFU/mL. These results demonstrate the variety of methods that can be used to modify siloxanes and the wide range of applications of modified siloxanes has been demonstrated through chemical and biological sensing schemes.