2 resultados para high-strength and high-modulus fibres

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Adolescence is a period of life associated with self-perceptions of negative body image. Physical activity levels are low and screen time levels are also high during this stage. These perceptions and behaviours are associated with poor health outcomes, making research on their determinants important. With adolescent populations, certain groups may be at higher risk of body dissatisfaction than others, and body dissatisfaction may influence individual physical activity and screen time levels. Objectives: The objectives of this thesis were to: 1) describe body image among young Canadians, examining possible health inequalities 2) estimate the strength and significance of associations between body satisfaction, physical activity and screen time, and 3) examine the potential etiological role of biological sex. Methods: Objective 1: The 2013/2014 Health Behaviour in School-aged Children study was employed. Sex-stratified Rao-Scott chi-square analyses were conducted to examine associations between socio-demographic factors and body satisfaction. Objective 2: The 2005/2006 and 2013/2014 cross-sectional and 2006 longitudinal HBSC data sets were used. Sex-stratified modified Poisson regressions were conducted and risk estimates and associated confidence intervals obtained. Results: Objective 1: Among males, being older, of East and Southeast Asian ethnicity, and reporting low SES all were associated with body dissatisfaction. Among females, being older, of Arab and West Asian or African ethnicity, being born in Canada, and reporting low SES were all associated with being body dissatisfied. Objective 2: Cross-sectionally, males who reported ‘too fat’ body dissatisfaction were more likely to be physically inactive. Adolescents of both sexes who reported ‘too fat’ body dissatisfaction were more likely to engage in high levels of screen time. Data from the longitudinal component supported the idea that male ‘too fat’ body dissatisfaction temporally leads to physical inactivity, but showed an inverse relationship between body dissatisfaction and screen time. Conclusions: Objective 1: Future prevention efforts in Canada should target subgroups to effectively help those at greatest risk of body dissatisfaction, and ameliorate potential inequalities at the population level. Objective 2: The presence of these relationships may inform future interventions as part of a multi-factorial etiology, in order to increase physical activity and decrease screen time among youth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every aerobic organism expresses cytochrome c oxidase to catalyze reduction of molecular oxygen to water, and takes advantage of this energy releasing reaction to produce an electrochemical gradient used in cellular energy production. The protein SCO (Synthesis of cytochrome c oxidase) is a required assembly factor for the oxidase, conserved across many species. SCO is implicated in the assembly of one of two copper centres (ie., CuA) of cytochrome oxidase. The exact mechanism of SCO’s participation in CuA assembly is not known. SCO has been proposed to bind and deliver copper, or alternatively to act in reductive preparation of the CuA site within the oxidase. In this body of work, the strength and stability of Cu(II) binding to Bacillus subtilis SCO is explored via electronic absorption and fluorescence spectroscopies and by calorimetric methods. An equilibrium dissociation constant (Kd) of 3.5x10-12 M was determined as an upper limit for the BsSCO-Cu(II) interaction, via differential scanning calorimetry. In the first reported case for a SCO homolog, dissociation kinetics of Cu(II) from BsSCO were characterized, and found to be dependent on both ionic strength and the presence of free Cu(II) in solution. Further differential scanning calorimetry experiments performed at high ionic strength support a two-step model of BsSCO and Cu(II) binding. The implications of this model for the BsSCO-Cu(II) interaction are presented in relation to the mechanism of interaction between SCO and the CuA site of cytochrome c oxidase.