2 resultados para finite-difference time-domain technique
em QSpace: Queen's University - Canada
Resumo:
Far-field stresses are those present in a volume of rock prior to excavations being created. Estimates of the orientation and magnitude of far-field stresses, often used in mine design, are generally obtained by single-point measurements of stress, or large-scale, regional trends. Point measurements can be a poor representation of far-field stresses as a result of excavation-induced stresses and geological structures. For these reasons, far-field stress estimates can be associated with high levels of uncertainty. The purpose of this thesis is to investigate the practical feasibility, applications, and limitations of calibrating far-field stress estimates through tunnel deformation measurements captured using LiDAR imaging. A method that estimates the orientation and magnitude of excavation-induced principal stress changes through back-analysis of deformation measurements from LiDAR imaged tunnels was developed and tested using synthetic data. If excavation-induced stress change orientations and magnitudes can be accurately estimated, they can be used in the calibration of far-field stress input to numerical models. LiDAR point clouds have been proven to have a number of underground applications, thus it is desired to explore their use in numerical model calibration. The back-analysis method is founded on the superposition of stresses and requires a two-dimensional numerical model of the deforming tunnel. Principal stress changes of known orientation and magnitude are applied to the model to create calibration curves. Estimation can then be performed by minimizing squared differences between the measured tunnel and sets of calibration curve deformations. In addition to the back-analysis estimation method, a procedure consisting of previously existing techniques to measure tunnel deformation using LiDAR imaging was documented. Under ideal conditions, the back-analysis method estimated principal stress change orientations within ±5° and magnitudes within ±2 MPa. Results were comparable for four different tunnel profile shapes. Preliminary testing using plastic deformation, a rough tunnel profile, and profile occlusions suggests that the method can work under more realistic conditions. The results from this thesis set the groundwork for the continued development of a new, inexpensive, and efficient far-field stress estimate calibration method.
Resumo:
The real-time optimization of large-scale systems is a difficult problem due to the need for complex models involving uncertain parameters and the high computational cost of solving such problems by a decentralized approach. Extremum-seeking control (ESC) is a model-free real-time optimization technique which can estimate unknown parameters and can optimize nonlinear time-varying systems using only a measurement of the cost function to be minimized. In this thesis, we develop a distributed version of extremum-seeking control which allows large-scale systems to be optimized without models and with minimal computing power. First, we develop a continuous-time distributed extremum-seeking controller. It has three main components: consensus, parameter estimation, and optimization. The consensus provides each local controller with an estimate of the cost to be minimized, allowing them to coordinate their actions. Using this cost estimate, parameters for a local input-output model are estimated, and the cost is minimized by following a gradient descent based on the estimate of the gradient. Next, a similar distributed extremum-seeking controller is developed in discrete-time. Finally, we consider an interesting application of distributed ESC: formation control of high-altitude balloons for high-speed wireless internet. These balloons must be steered into a favourable formation where they are spread out over the Earth and provide coverage to the entire planet. Distributed ESC is applied to this problem, and is shown to be effective for a system of 1200 ballons subjected to realistic wind currents. The approach does not require a wind model and uses a cost function based on a Voronoi partition of the sphere. Distributed ESC is able to steer balloons from a few initial launch sites into a formation which provides coverage to the entire Earth and can maintain a similar formation as the balloons move with the wind around the Earth.