2 resultados para ethylene glycol dimethacrylate

em QSpace: Queen's University - Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis describes the preparation of polymersomes from poly(ethylene glycol)-block-polycarbonate (PEG-PC) copolymers functionalized with pendant coumarin groups. Coumarin groups undergo photo-reversible dimerization when irradiated with specific ultraviolet wavelengths, so they can be used to prepare polymers with photo-responsive properties. In this case, the pendant coumarin groups enable stabilization of the polymersome membrane through photo-crosslinking of the hydrophobic block. Initially, several novel cinnamoyl and coumarin functionalized cyclic carbonate monomers were synthesized using ester, ether, or amide linkages. While the homopolymerization of these functionalized monomers proved challenging due to their high melting points, both cinnamoyl and coumarin functionalized monomers were successfully copolymerized with trimethylene carbonate (TMC) at 100 ℃ using a catalyst-free melt polymerization process where the TMC doubled as a solvent for the higher melting point monomer. Using this system, polycarbonate copolymers with up to 33% incorporation of the functionalized monomers were prepared. In addition, an investigation of some anomalous polymerization results identified previously unreported triethylamine-based catalysts for the melt polymerization of carbonate monomers. These studies also demonstrated that the catalyst-free polymerization of TMC occurs faster and at lower temperatures than previously reported. Subsequently, the photo-crosslinking of cinnamoyl and coumarin functionalized polycarbonates was compared and coumarin was identified as the more effective crosslinking agent when using 300-400 nm UV. An investigation of the photo-reversibility of the coumarin dimerization revealed no discernible change in the properties of crosslinked networks, but rapid photo-reversion in dilute solutions. The photo-crosslinking and photo-reversion kinetics of the coumarin functionalized polycarbonates were determined to be second-order in both cases. Finally, the self-assembly of PEG-PC diblock copolymers functionalized with coumarin was examined and both reverse solvent evaporation and solvent displacement were found to induce self-assembly, with hydrophilic mass fractions (f-factors) of 12-28% resulting in the formation of solid microparticles and nanoparticles and f-factors of 33-43% resulting in the formation of polymersomes. The stabilization of these polymersome membranes through photo-initiator-free photo-crosslinking was demonstrated with the crosslinking allowing polymersomes to withstand centrifugation at 12,000 x g. In addition, the encapsulation of calcein, as a model small molecule drug, in the stabilized polymersomes was successfully demonstrated using confocal microscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of ∆n = 1-7 ×10-4 and ∆d < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.