2 resultados para electrical detection

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the growing concerns associated with fossil fuels, emphasis has been placed on clean and sustainable energy generation. This has resulted in the increase in Photovoltaics (PV) units being integrated into the utility system. The integration of PV units has raised some concerns for utility power systems, including the consequences of failing to detect islanding. Numerous methods for islanding detection have been introduced in literature. They can be categorized into local methods and remote methods. The local methods are categorically divided into passive and active methods. Active methods generally have smaller Non-Detection Zone (NDZ) but the injecting disturbances will slightly degrade the power quality and reliability of the power system. Slip Mode Frequency Shift Islanding Detection Method (SMS IDM) is an active method that uses positive feedback for islanding detection. In this method, the phase angle of the converter is controlled to have a sinusoidal function of the deviation of the Point of Common Coupling (PCC) voltage frequency from the nominal grid frequency. This method has a non-detection zone which means it fails to detect islanding for specific local load conditions. If the SMS IDM employs a different function other than the sinusoidal function for drifting the phase angle of the inverter, its non-detection zone could be smaller. In addition, Advanced Slip Mode Frequency Shift Islanding Detection Method (Advanced SMS IDM), which has been introduced in this thesis, eliminates the non-detection zone of the SMS IDM. In this method the parameters of SMS IDM change based on the local load impedance value. Moreover, the stability of the system is investigated by developing the dynamical equations of the system for two operation modes; grid connected and islanded mode. It is mathematically proven that for some loading conditions the nominal frequency is an unstable point and the operation frequency slides to another stable point, while for other loading conditions the nominal frequency is the only stable point of the system upon islanding occurring. Simulation and experimental results show the accuracy of the proposed methods in detection of islanding and verify the validity of the mathematical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of decentralized sequential detection is studied in this thesis, where local sensors are memoryless, receive independent observations, and no feedback from the fusion center. In addition to traditional criteria of detection delay and error probability, we introduce a new constraint: the number of communications between local sensors and the fusion center. This metric is able to reflect both the cost of establishing communication links as well as overall energy consumption over time. A new formulation for communication-efficient decentralized sequential detection is proposed where the overall detection delay is minimized with constraints on both error probabilities and the communication cost. Two types of problems are investigated based on the communication-efficient formulation: decentralized hypothesis testing and decentralized change detection. In the former case, an asymptotically person-by-person optimum detection framework is developed, where the fusion center performs a sequential probability ratio test based on dependent observations. The proposed algorithm utilizes not only reported statistics from local sensors, but also the reporting times. The asymptotically relative efficiency of proposed algorithm with respect to the centralized strategy is expressed in closed form. When the probabilities of false alarm and missed detection are close to one another, a reduced-complexity algorithm is proposed based on a Poisson arrival approximation. In addition, decentralized change detection with a communication cost constraint is also investigated. A person-by-person optimum change detection algorithm is proposed, where transmissions of sensing reports are modeled as a Poisson process. The optimum threshold value is obtained through dynamic programming. An alternative method with a simpler fusion rule is also proposed, where the threshold values in the algorithm are determined by a combination of sequential detection analysis and constrained optimization. In both decentralized hypothesis testing and change detection problems, tradeoffs in parameter choices are investigated through Monte Carlo simulations.