4 resultados para distributed electric model

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The real-time optimization of large-scale systems is a difficult problem due to the need for complex models involving uncertain parameters and the high computational cost of solving such problems by a decentralized approach. Extremum-seeking control (ESC) is a model-free real-time optimization technique which can estimate unknown parameters and can optimize nonlinear time-varying systems using only a measurement of the cost function to be minimized. In this thesis, we develop a distributed version of extremum-seeking control which allows large-scale systems to be optimized without models and with minimal computing power. First, we develop a continuous-time distributed extremum-seeking controller. It has three main components: consensus, parameter estimation, and optimization. The consensus provides each local controller with an estimate of the cost to be minimized, allowing them to coordinate their actions. Using this cost estimate, parameters for a local input-output model are estimated, and the cost is minimized by following a gradient descent based on the estimate of the gradient. Next, a similar distributed extremum-seeking controller is developed in discrete-time. Finally, we consider an interesting application of distributed ESC: formation control of high-altitude balloons for high-speed wireless internet. These balloons must be steered into a favourable formation where they are spread out over the Earth and provide coverage to the entire planet. Distributed ESC is applied to this problem, and is shown to be effective for a system of 1200 ballons subjected to realistic wind currents. The approach does not require a wind model and uses a cost function based on a Voronoi partition of the sphere. Distributed ESC is able to steer balloons from a few initial launch sites into a formation which provides coverage to the entire Earth and can maintain a similar formation as the balloons move with the wind around the Earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underground hardrock mining can be very energy intensive and in large part this can be attributed to the power consumption of underground ventilation systems. In general, the power consumed by a mine’s ventilation system and its overall scale are closely related to the amount of diesel power in operation. This is because diesel exhaust is a major source of underground air pollution, including diesel particulate matter (DPM), NO2 and heat, and because regulations tie air volumes to diesel engines. Furthermore, assuming the size of airways remains constant, the power consumption of the main system increases exponentially with the volume of air supplied to the mine. Therefore large diesel fleets lead to increased energy consumption and can also necessitate large capital expenditures on ventilation infrastructure in order to manage power requirements. Meeting ventilation requirements for equipment in a heading can result in a similar scenario with the biggest pieces leading to higher energy consumption and potentially necessitating larger ventilation tubing and taller drifts. Depending on the climate where the mine is located, large volumes of air can have a third impact on ventilation costs if heating or cooling the air is necessary. Annual heating and cooling costs, as well as the cost of the associated infrastructure, are directly related to the volume of air sent underground. This thesis considers electric mining equipment as a means for reducing the intensity and cost of energy consumption at underground, hardrock mines. Potentially, electric equipment could greatly reduce the volume of air needed to ventilate an entire mine as well as individual headings because they do not emit many of the contaminants found in diesel exhaust and because regulations do not connect air volumes to electric motors. Because of the exponential relationship between power consumption and air volumes, this could greatly reduce the amount of power required for mine ventilation as well as the capital cost of ventilation infrastructure. As heating and cooling costs are also directly linked to air volumes, the cost and energy intensity of heating and cooling the air would also be significantly reduced. A further incentive is that powering equipment from the grid is substantially cheaper than fuelling them with diesel and can also produce far fewer GHGs. Therefore, by eliminating diesel from the underground workers will enjoy safer working conditions and operators and society at large will gain from a smaller impact on the environment. Despite their significant potential, in order to produce a credible economic assessment of electric mining equipment their impact on underground systems must be understood and considered in their evaluation. Accordingly, a good deal of this thesis reviews technical considerations related to the use of electric mining equipment, especially ones that impact the economics of their implementation. The goal of this thesis will then be to present the economic potential of implementing the equipment, as well as to outline the key inputs which are necessary to support an evaluation and to provide a model and an approach which can be used by others if the relevant information is available and acceptable assumptions can be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bidirectional DC-DC converters are widely used in different applications such as energy storage systems, Electric Vehicles (EVs), UPS, etc. In particular, future EVs require bidirectional power flow in order to integrate energy storage units into smart grids. These bidirectional power converters provide Grid to Vehicle (V2G)/ Vehicle to Grid (G2V) power flow capability for future EVs. Generally, there are two control loops used for bidirectional DC-DC converters: The inner current loop and The outer loop. The control of DAB converters used in EVs are proved to be challenging due to the wide range of operating conditions and non-linear behavior of the converter. In this thesis, the precise mathematical model of the converter is derived and non-linear control schemes are proposed for the control system of bidirectional DC-DC converters based on the derived model. The proposed inner current control technique is developed based on a novel Geometric-Sequence Control (GSC) approach. The proposed control technique offers significantly improved performance as compared to one for conventional control approaches. The proposed technique utilizes a simple control algorithm which saves on the computational resources. Therefore, it has higher reliability, which is essential in this application. Although, the proposed control technique is based on the mathematical model of the converter, its robustness against parameter uncertainties is proven. Three different control modes for charging the traction batteries in EVs are investigated in this thesis: the voltage mode control, the current mode control, and the power mode control. The outer loop control is determined by each of the three control modes. The structure of the outer control loop provides the current reference for the inner current loop. Comprehensive computer simulations have been conducted in order to evaluate the performance of the proposed control methods. In addition, the proposed control have been verified on a 3.3 kW experimental prototype. Simulation and experimental results show the superior performance of the proposed control techniques over the conventional ones.