2 resultados para dilute-nitric-acid hydrolysis

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bushranger Copper project is a known porphyry-style copper deposit located roughly 150 km west of Sydney in New South Wales, Australia. Monterey pines (Pinus radiata) growing over the mineralization were cored and their rings were counted. Segments of the core representing growth between 2003 and 2008 were selected, digested in nitric acid, and analyzed via ICP-MS. This time span was selected because there was the least variation in tree ring width among all samples during these years, indicating uniform growth. The relative concentrations of the pathfinder elements Al, Cu, Mo, Pb and Zn were highest in the south-western corner of the area. Based on the data this area is the most prospective area to conduct further exploration efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the SNO+ neutrinoless double beta decay search, various backgrounds, ranging from impurities present naturally to those produced cosmogenically, must be understood and reduced. Cosmogenic backgrounds are particularly difficult to reduce as they are continually regenerated while exposed to high energy cosmic rays. To reduce these cosmogenics as much as possible the tellurium used for the neutrinoless double beta decay search will be purified underground. An analysis of the purification factors achievable for insoluble cosmogenic impurities found a reduction factor of $>$20.4 at 50\% C.L.. During the purification process the tellurium will come into contact with ultra pure water and nitric acid. These liquids both carry some cosmogenic impurities with them that could be potentially transferred to the tellurium. A conservative limit is set at $<$18 events in the SNO+ region of interest (ROI) per year as a result of contaminants from these liquids. In addition to cosmogenics brought underground, muons can produce radioactive isotopes while the tellurium is stored underground. A study on the rate at which muons produce these backgrounds finds an additional 1 event per year. In order to load the tellurium into the detector, it will be combined with 1,2-butanediol to form an organometallic complex. The complex was found to have minimal effect on the SNO+ acrylic vessel for 154 years.