4 resultados para current source conversion
em QSpace: Queen's University - Canada
Resumo:
We present an extensive photometric catalog for 548 CALIFA galaxies observed as of the summer of 2015. CALIFA is currently lacking photometry matching the scale and diversity of its spectroscopy; this work is intended to meet all photometric needs for CALIFA galaxies while also identifying best photometric practices for upcoming integral field spectroscopy surveys such as SAMI and MaNGA. This catalog comprises gri surface brightness profiles derived from Sloan Digital Sky Survey (SDSS) imaging, a variety of non-parametric quantities extracted from these pro files, and parametric models fitted to the i-band pro files (1D) and original galaxy images (2D). To compliment our photometric analysis, we contrast the relative performance of our 1D and 2D modelling approaches. The ability of each measurement to characterize the global properties of galaxies is quantitatively assessed, in the context of constructing the tightest scaling relations. Where possible, we compare our photometry with existing photometrically or spectroscopically obtained measurements from the literature. Close agreement is found with Walcher et al. (2014), the current source of basic photometry and classifications of CALIFA galaxies, while comparisons with spectroscopically derived quantities reveals the effect of CALIFA's limited field of view compared to broadband imaging surveys such as the SDSS. The colour-magnitude diagram, star formation main sequence, and Tully-Fisher relation of CALIFA galaxies are studied, to give a small example of the investigations possible with this rich catalog. We conclude with a discussion of points of concern for ongoing integral field spectroscopy surveys and directions for future expansion and exploitation of this work.
Resumo:
It has been proposed that the field of appropriate technology (AT) - small-scale, energy efficient and low-cost solutions, can be of tremendous assistance in many of the sustainable development challenges, such as food and water security, health, shelter, education and work opportunities. Unfortunately, there has not yet been a significant uptake of AT by organizations, researchers, policy makers or the mainstream public working in the many areas of the development sector. Some of the biggest barriers to higher AT engagement include: 1) AT perceived as inferior or ‘poor persons technology’, 2) questions of technological robustness, design, fit and transferability, 3) funding, 4) institutional support, as well as 5) general barriers associated with tackling rural poverty. With the rise of information and communication technologies (ICTs) for online networking and knowledge sharing, the possibilities to tap into the collaborative open-access and open-source AT are growing, and so is the prospect for collective poverty reducing strategies, enhancement of entrepreneurship, communications, education and a diffusion of life-changing technologies. In short, the same collaborative philosophy employed in the success of open source software can be applied to hardware design of technologies to improve sustainable development efforts worldwide. To analyze current barriers to open source appropriate technology (OSAT) and explore opportunities to overcome such obstacles, a series of interviews with researchers and organizations working in the field of AT were conducted. The results of the interviews confirmed the majority of literature identified barriers, but also revealed that the most pressing problem for organizations and researchers currently working in the field of AT is the need for much better communication and collaboration to share the knowledge and resources and work in partnership. In addition, interviews showcased general receptiveness to the principles of collaborative innovation and open source on the ground level. A much greater focus on networking, collaboration, demand-led innovation, community participation, and the inclusion of educational institutions through student involvement can be of significant help to build the necessary knowledge base, networks and the critical mass exposure for the growth of appropriate technology.
Resumo:
A double balanced (DBM) CMOS mixer providing high linearity is presented in this paper. A cross-coupled pair used in the IF stage of the mixer to dynamically inject current into the to mixer provide a high linearity. The proposed DBM was fabricated using a standard 130-nm CMOS process and was tested on-wafer. The double balanced mixer delivers 10 dB conversion gain, 9.5 dBm IIP3, and input P1dB of -2.4 dBm. RF bandwidth of the proposed mixer is 6 GHz, covering 0.5 GHz to 6.5 GHz with IF bandwidth of 300 MHz. RF to IF and LO to IF isolation are also better than 59 dB in the whole frequency band. The circuit uses an area of 0.015 mm2 excluding bonding pads and draw 4.5mW from a 1.2V supply.
Resumo:
A 4-10 GHz, on-chip balun based current commutating mixer is proposed. Tunable resistive feedback is used at the transconductance stage for wideband response, and interlaced stacked transformer is adopted for good balance of the balun. Measurement results show that a conversion gain of 13.5 dB, an IIP3 of 4 dBm and a noise figure of 14 dB are achieved with 5.6 mW power consumption under 1.2 V supply. The simulated amplitude and phase imbalance is within 0.9 dB and ±2◦ over the band.