3 resultados para crash type analysis

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevated plasma concentrations of lipoprotein(a) [Lp(a)] have been identified as an independent risk factor for vascular diseases including coronary heart disease and stroke. In the current study, we have examined the binding and degradation of recombinant forms of apolipoprotein(a) [r-apo(a)], the unique kringle-containing moiety of Lp(a), using a cultured cell model. We found that the incubation of human hepatoma (HepG2) cells with an iodinated 17 kringle-containing (17K) recombinant form of apo(a) resulted in a two-component binding system characterized by a high affinity (Kd = 12 nM), low capacity binding site, and a low affinity (Kd = 249 nM), high capacity binding site. We subsequently determined that the high affinity binding site on HepG2 cells corresponds to the LDL receptor. In the HepG2 cell model, association of apo(a) with the LDL receptor was shown to be dependent on the formation of Lp(a) particles from endogenous LDL. Using an apo(a) mutant incapable of binding to the high affinity site through its inability to form Lp(a) particles (17KΔLBS7,8), we further demonstrated that the LDL receptor does not participate in Lp(a) catabolism. The low affinity binding component observed on HepG2 cells, familial hypercholesterolemia (FH) fibroblasts and human embryonic kidney (HEK) 293 cells may correspond to a member(s) of the plasminogen receptor family, as binding to this site(s) was decreased by the addition of the lysine analogue epsilon-aminocaproic acid. The lysine-dependent nature of the low affinity binding site was further confirmed in HepG2 binding studies utilizing r-apo(a) species with impaired lysine binding ability. We observed a reduction maximum binding capacity for 17K r-apo(a) variants lacking the strong lysine binding site (LBS) in kringle IV type 10 (17KΔAsp) and the very weak LBS in kringle V (17KΔV). Degradation of Lp(a)/apo(a) was found to be mediated exclusively by the low affinity component on both HepG2 cells and FH fibroblasts. Fluorescence confocal microscopy, using the 17K r-apo(a) variant fused to green fluorescent protein, further confirmed that degradation by the low affinity component on HepG2 cells does not proceed by the activity of cellular lysosomes. Taken together, these data suggest a potentially significant route for Lp(a)/apo(a) clearance in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite attempts to identify the mechanisms by which obesity leads to the development of Type 2 Diabetes (T2D), it remains unclear why some but not all adults with obesity develop T2D. Given the established associations between visceral adipose tissue (VAT) and liver fat with insulin resistance, we hypothesized that compared to age and obesity matched adults who were non-diabetic (NT2D), adults with T2D would have greater amounts of VAT and liver fat. The International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship with Cardiometabolic Risk/Intra-Abdominal Adiposity (INSPIRE ME IAA) aims to study the associations between VAT and liver fat and risk of developing T2D and cardiovascular disease. Four thousand, five hundred and four participants were initially recruited; from this, 2383 White and Asian adults were selected for this ancillary analysis. The NT2D and T2D groups were matched for age, body mass index (BMI) and waist circumference (WC). The T2D and NT2D groups were also compared to participants with either impaired fasting glucose (IFG) or impaired glucose tolerance (IGT; IFG/IGT)). Abdominal adipose tissue was measured by computed tomography; liver fat was estimated using computed tomography-derived mean attenuation. Secondary analysis determined whether differences existed between NT2D and T2D groups in VAT and liver fat accumulation within selected BMI categories for Whites and Asians. We report across sex and race, T2D and IFG/IGT groups had elevated VAT and liver fat compared to the NT2D group (p<0.05). VAT was not different between IFG/IGT and T2D groups (p>0.05), however liver fat was greater in the T2D group compared to the IFG/IGT group in both Whites and Asians (p<0.05). Within each BMI category, the T2D group had elevated VAT and liver fat compared to the age and anthropometrically matched NT2D group in both Whites and Asians (p<0.05). With few exceptions, abdominal subcutaneous adipose tissue was not different in the T2D or IFG/IGT groups compared to the NT2D group independent of sex and race. Compared to age and obesity-matched adults who are NT2D, we observe that White and Asian adults with T2D, and those with IFG/IGT, present with greater levels of both VAT and liver fat.