3 resultados para copyright future

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Giovanni Battista Montano (1534-1621), who was born in Milan and trained as a woodcarver, relocated permanently to Rome in the early 1570s where his interest in sculpting was replaced by intense study of the city’s antique monuments and ruins. Although Montano carried out several sculptural and architectural projects during his time in Rome, it is his surviving corpus of drawings that testifies to his passion of exploring ancient architecture through the medium of drawing. While Montano was not famous during his lifetime, a large body of his intriguing designs became celebrated and widely circulated after his death thanks to the 1624 publication of Montano’s designs by his loyal pupil, Giovanni Battista Soria. Montano’s lifelong work differs from virtually all of his predecessors and contemporaries in its “fantastical” and ornamental nature. This thesis explores Montano’s artistic training as it relates to his later interest in imaginatively reconstructing antique buildings, along with his disregard for archaeological or historical accuracy. The subject matter upon which Montano focused is discussed, along with his objective in creating a large corpus of half-historical, half-invented drawings. His drawing techniques are explored with specific reference to the largest group of extant Montano drawings, today housed in Sir John Soane’s Museum, London, England, and also in reference to three original Montano drawings in the Centre Canadien d’Architecture/Canadian Centre for Architecture, Montréal. Also explored is the legacy and impact of Montano’s drawings and the later publications of his designs on the works of Roman Baroque architects, specifically Borromini and Bernini. This thesis ultimately attempts to understand the impact of the intellectual and artistic environment surrounding Montano in late sixteenth and early seventeenth century Rome, his drawing techniques, his choice of subject matter, and the reception that his unique works received from contemporary artists and intellectuals, along with those of the following generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bidirectional DC-DC converters are widely used in different applications such as energy storage systems, Electric Vehicles (EVs), UPS, etc. In particular, future EVs require bidirectional power flow in order to integrate energy storage units into smart grids. These bidirectional power converters provide Grid to Vehicle (V2G)/ Vehicle to Grid (G2V) power flow capability for future EVs. Generally, there are two control loops used for bidirectional DC-DC converters: The inner current loop and The outer loop. The control of DAB converters used in EVs are proved to be challenging due to the wide range of operating conditions and non-linear behavior of the converter. In this thesis, the precise mathematical model of the converter is derived and non-linear control schemes are proposed for the control system of bidirectional DC-DC converters based on the derived model. The proposed inner current control technique is developed based on a novel Geometric-Sequence Control (GSC) approach. The proposed control technique offers significantly improved performance as compared to one for conventional control approaches. The proposed technique utilizes a simple control algorithm which saves on the computational resources. Therefore, it has higher reliability, which is essential in this application. Although, the proposed control technique is based on the mathematical model of the converter, its robustness against parameter uncertainties is proven. Three different control modes for charging the traction batteries in EVs are investigated in this thesis: the voltage mode control, the current mode control, and the power mode control. The outer loop control is determined by each of the three control modes. The structure of the outer control loop provides the current reference for the inner current loop. Comprehensive computer simulations have been conducted in order to evaluate the performance of the proposed control methods. In addition, the proposed control have been verified on a 3.3 kW experimental prototype. Simulation and experimental results show the superior performance of the proposed control techniques over the conventional ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.