2 resultados para complex data
em QSpace: Queen's University - Canada
Resumo:
Smart cities, cities that are supported by an extensive digital infrastructure of sensors, databases and intelligent applications, have become a major area of academic, governmental and public interest. Simultaneously, there has been a growing interest in open data, the unrestricted use of organizational data for public viewing and use. Drawing on Science and Technology Studies (STS), Urban Studies and Political Economy, this thesis examines how digital processes, open data and the physical world can be combined in smart city development, through the qualitative interview-based case study of a Southern Ontario Municipality, Anytown. The thesis asks what are the challenges associated with smart city development and open data proliferation, is open data complimentary to smart urban development; and how is expertise constructed in these fields? The thesis concludes that smart city development in Anytown is a complex process, involving a variety of visions, programs and components. Although smart city and open data initiatives exist in Anytown, and some are even overlapping and complementary, smart city development is in its infancy. However, expert informants remained optimistic, faithful to a technologically sublime vision of what a smart city would bring. The thesis also questions the notion of expertise within the context of smart city and open data projects, concluding that assertions of expertise need to be treated with caution and scepticism when considering how knowledge is received, generated, interpreted and circulates, within organizations.
Resumo:
When we study the variables that a ffect survival time, we usually estimate their eff ects by the Cox regression model. In biomedical research, e ffects of the covariates are often modi ed by a biomarker variable. This leads to covariates-biomarker interactions. Here biomarker is an objective measurement of the patient characteristics at baseline. Liu et al. (2015) has built up a local partial likelihood bootstrap model to estimate and test this interaction e ffect of covariates and biomarker, but the R code developed by Liu et al. (2015) can only handle one variable and one interaction term and can not t the model with adjustment to nuisance variables. In this project, we expand the model to allow adjustment to nuisance variables, expand the R code to take any chosen interaction terms, and we set up many parameters for users to customize their research. We also build up an R package called "lplb" to integrate the complex computations into a simple interface. We conduct numerical simulation to show that the new method has excellent fi nite sample properties under both the null and alternative hypothesis. We also applied the method to analyze data from a prostate cancer clinical trial with acid phosphatase (AP) biomarker.