2 resultados para chemotherapy-induced nausea and vomiting

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer development, metastasis and drug resistance. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ (transcriptional co-activator with PDZ-binding motif) is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in non-small cell lung cancer (NSCLC) and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Oncogenes upregulated in TAZ-overexpressing cells were identified with further validation. The most dramatically activated gene, Aldh1a1 (Aldehyde dehydrogenase 1 family member a1), a well-established CSC marker, showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEA domain (TEAD) family member. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis and drug resistance in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pre-eclampsia (PE) is a pregnancy disorder that affects roughly 5-7% of all pregnancies and is a leading cause of both maternal and fetal/neonatal morbidity and mortality. With no present cure for the disease, researchers are interested in the lower incidence of PE observed among the cigarette smoking pregnant population. However, women who use smokeless tobacco do not experience the same decreased incidence of PE, leading to hypothesis of protection against PE from the largest combustible product of cigarette smoke, carbon monoxide (CO). Studies evaluated levels of CO in PE women and found that they were statistically lower than those of healthy pregnancy. Researchers have found CO to possess many cytoprotective and regulatory properties and specifically within the placenta, it has been found to increase perfusion pressure, decrease oxidative stress, decreases ischemia/reperfusion induced apoptosis and maintain endothelial functioning. The idea for use of CO as a possible therapeutic for PE has thus become a real possibility. This study determined CO levels in pregnant women ± smoking as well as in PE women±smoking, as to discover a possible therapeutic range for future treatments. The best correlated automated CO measurement device with blood CO levels was determined, for use in future clinical studies. This thesis also sought a possible CO delivery concentration, in order to achieve the CO levels observed in the human correlation study. A threshold level of maternal CO exposure in a murine animal model was found, for which fetal and maternal negative toxicities were not observed. The results of this thesis lend a few more pieces to the complicated puzzle involving CO and PE and offer another step toward the possibility of a therapeutic treatment/prevention using this gaseous molecule.