3 resultados para cell strain SK Mel 23

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interluekin-23 (IL-23) is a pro-inflammatory cytokine critical to the regulation of innate and adaptive immune responses. The main role for this cytokine is in the proliferation and differentiation of the IL-17 producing CD4 T helper cell, Th17. Virus infection deregulates IL-23 expression and function, but little is known about the mechanism behind this phenomena. Here, I demonstrate a reduction of Toll like receptor (TLR) ligand-induced IL-23 expression in lymphocytic choriomeningitis virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs), indicating that a function of these cells is disrupted during virus infection. I propose a mechanism of TLR ligand-induced IL-23 expression inhibition upon LCMV infection via the deactivation of p38, AP-1, and NF-κB. Further analysis revealed a direct relationship between LCMV infection with the IL-10 and SOCS3 expression. To understand IL-23 function, I characterized IL-23-induced JAK/STAT signalling pathway and IL-23 receptor expression on human CD4 T cells. My results demonstrate that IL-23 induces activation of p-JAK2, p-Tyk2, p-STAT1, p-STAT3, and p-STAT4 in CD4 T cells. For the first time I show that IL-23 alone induces the expression of its own receptor components, IL-12Rβ1 and IL-23Rα, in CD4 T cells. Blocking JAK2, STAT1, and STAT3 activation with specific inhibitors detrimentally effected expression of IL-23 receptor demonstrating that activation of JAK/STAT signalling is important for IL-23 receptor expression. I also addressed the effect of viral infection on IL-23 function and receptor expression in CD4 T cells using cells isolated from HIV positive individuals. These studies were based on earlier reports that the expression of IL-23 and the IL-23 receptor are impaired during HIV infection. I demonstrate that the phosphorylation of JAK2, STAT1, and STAT3 induced by IL-23, as well as IL-23 receptor expression are deregulated in CD4 T cells isolated from HIV positive individuals. This study has furthered the understanding of how the expression and function of IL-23 is regulated during viral infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer development, metastasis and drug resistance. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ (transcriptional co-activator with PDZ-binding motif) is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in non-small cell lung cancer (NSCLC) and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Oncogenes upregulated in TAZ-overexpressing cells were identified with further validation. The most dramatically activated gene, Aldh1a1 (Aldehyde dehydrogenase 1 family member a1), a well-established CSC marker, showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEA domain (TEAD) family member. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis and drug resistance in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A functional nervous system requires the precise arrangement of all nerve cells and their neurites. To achieve this correct assembly, a myriad of molecular guidance cues works together to direct the outgrowth of neurites to their correct positions. The small nematode C. elegans provides the ideal model system to study the complex mechanisms of neurite guidance due to its relatively simple nervous system, composed of 302 neurons. I used two mechanosensory neurons, called the posterior lateral microtubule (PLM), to investigate the role of the ephrin and Eph receptor protein family in neurite termination in C. elegans. Activation of the C. elegans Eph receptor VAB-1 on the PLM growth cone is sufficient to cause PLM termination, but the identity and location of the activating ligand has not been established. In my thesis I investigated the ability of the ephrin ligand EFN-1 to activate VAB-1 to cause PLM termination when expressed on the same cell (in cis) and on opposing cells (in trans) to the receptor. I showed that EFN-1 is able to activate VAB-1 in cis and in trans to cause PLM termination. I also assessed the hypodermal seam cells as the source of the ephrin stop cue using fluorescently labelled and seam cell mutant transgenic worms. I found that although the PLM shows consistent termination on the seam cell V2 in wild type worms independent of PLM length, this process is not significantly disrupted in seam cell mutants. With this information I have created a new hypothesis that the PLM neurite is able the provide a positional cue for the developing seam cells, and have created a new transgenic strain which can be used to assess the impact of PLM and ALM cell ablation on seam cell position. My research is the first to demonstrate the ability of an ephrin ligand to activate its ephrin receptor in cis, and further research can investigate if this finding has in vivo applications.