2 resultados para brachial plexus blockade

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The walls of blood vessels are lined with a single-cell layer of endothelial cells. As blood flows through the arteries, a frictional force known as shear stress is sensed by mechanosensitive structures on the endothelium. Short and long term changes in shear stress can have a significant influence on the regulation of endothelial function. Acutely, shear stress triggers a pathway that culminates in the release of vasodilatory molecules from the endothelium and subsequent vasodilation of the artery. This endothelial response is known as flow mediated dilation (FMD). FMD is used as an index of endothelial function and is commonly assessed using reactive hyperemia (RH)-FMD, a method which elicits a large, short lived increase in shear stress following the release of a brief (5 min) forearm occlusion. A recent study found that a short term exposure (30 min) to a sustained elevation in shear stress potentiates subsequent RH-FMD. FMD can also result from a more prolonged, sustained increase in shear stress elicited by handgrip exercise (HGEX-FMD). There is evidence to suggest that interventions and conditions impact FMD resulting from sustained and transient shear stress stimuli differently, indicating that HGEX-FMD and RH-FMD provide different information about endothelial function. It is unknown whether HGEX-FMD is improved by short term exposure to shear stress. Understanding how exercise induced FMD is regulated is important because it contributes to blood flow responses during exercise. The study purpose was therefore to assess the impact of a handgrip exercise (intervention) induced sustained elevation in shear stress on subsequent brachial artery (BA) HGEX-FMD. Twenty healthy male participants (22±3yrs) preformed a 30-minute HGEX intervention on two experimental days. BA-FMD was assessed using either an RH or HGEX shear stress stimulus at 3 time points: pre-intervention, 10 min post and 60 min post. FMD and shear stress magnitude were determined via ultrasound. Both HGEX and RH-FMD increased significantly from pre-intervention to 10 min-post (p<0.01). These findings indicate that FMD stimulated by exercise induced increases in shear stress is potentiated by short term shear stress exposure. These findings advance our understanding regarding the regulation of endothelial function by shear stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.