3 resultados para aryl iodides
em QSpace: Queen's University - Canada
Visual Observation of Redistribution and Dissolution of Palladium During the Suzuki–Miyaura Reaction
Resumo:
Now you see it, now you don't: A specially designed reactor that heats only a small area of Pd foil during a Suzuki-Miyaura coupling permits observation of the surface changes during the reaction. Dissolution of Pd occurs only in the heated zone, and only in the presence of aryl iodide, whereas deposition of Pd occurs preferentially on the unheated zones adjacent to the reactive zone. SEM and XPS are employed to probe the surface before and after reaction.
Resumo:
The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.
Resumo:
Numerous leukocyte populations are essential for pregnancy success. Uterine natural killer (uNK) cells are chief amongst these leukocytes and represent a unique lineage with limited cytotoxicity but abundant angiokine production. They possess a distinct phenotype of activating and inhibitory receptors that recognize major histocompatibility complex (MHC) molecules, such as the killer immunoglobulin like receptors (KIRs; mouse Ly49), and MHC-independent activating receptors, including the aryl hydrocarbon receptor (AHR) and natural cytotoxicity receptor 1 (NCR1). While the roles of MHC-dependent receptors are widely addressed in pregnancy, MHC-independent receptors are relatively unstudied. This thesis investigated the roles of MHC-independent receptors in promotion of mouse pregnancy and characterized early leukocyte interactions in the presence and absence of NCR1. It was hypothesized that loss of MHC-independent receptors impairs uNK cell development resulting in aberrations in leukocyte function and decidual vasculature. Implantation sites from Ahr-/- and Ncr1Gfp/Gfp mice were assessed using whole mount in situ immunohistochemistry (WM-IHC) and histochemical techniques. Leukocyte interactions identified during preliminary WM-IHC studies were confirmed as immune synapses. The novel identification of immune synapses in early mouse pregnancy compelled further examination of leukocyte conjugates in wildtype C57BL/6 and Ncr1Gfp/Gfp mice. In Ahr-/- and Ncr1Gfp/Gfp mice, receptor loss resulted in reduced uNK cell diameters, impaired decidual vasculature, and failures in spiral artery remodeling. Ahr-/- mice had severe fertility deficits whereas Ncr1Gfp/Gfp mice had increased fetal resorption indicating differing receptor requirements in pregnancy success. NCR1 loss primarily affected uNK cell maturation and function as identified by alterations in granule ultrastructure, lytic protein expression, and angiokine production. Leukocyte conjugates were frequent in early C57BL/6 decidua basalis and included uNK cells conjugating first with antigen presenting cells and then with T cells. Overall conjugate formation was reduced in the absence of NCR1, but specific uNK cell conjugations were unaffected by receptor loss. While KIR-MHC interactions are associated with numerous pregnancy complications in humans, the role of other uNK cell receptors are not well characterized. These results illustrate the importance of MHC-independent receptors in uNK cell activation during early pregnancy in mice and encourage further studies of pregnancy complications that may occur independently of maternal KIR-MHC contributions.