2 resultados para anoxic

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyramidal neurons (PyNs) in ‘higher’ brain are highly susceptible to acute stroke injury yet ‘lower’ brain regions better survive global ischemia, presumably because of better residual blood flow. Here we show that projection neurons in ‘lower’ brain regions of hypothalamus and brainstem intrinsically resist acute stroke-like injury independent of blood flow in the brain slice. In contrast `higher` projection neurons in neocortex, hippocampus, striatum and thalamus are highly susceptible. In live brain slices from rat deprived of oxygen and glucose (OGD), we imaged anoxic depolarization (AD) as it propagates through these regions. AD, the initial electrophysiological event of stroke, is a depolarizing front that drains residual energy in compromised gray matter. The extent of AD reliably determines ensuing damage in higher brain, but using whole-cell recordings we found that all CNS neurons do not generate a robust AD. Higher neurons generate strong AD and show no functional recovery in contrast to neurons in hypothalamus and brainstem that generate a weak and gradual AD. Most dramatically, lower neurons recover their membrane potential, input resistance and spike amplitude when oxygen and glucose is restored, while higher neurons do not. Following OGD, new recordings could be acquired in all lower (but not higher) brain regions, with some neurons even withstanding multiple OGD exposure. Two-photon laser scanning microscopy confirmed neuroprotection in lower, but not higher gray matter. Specifically pyramidal neurons swell and lose their dendritic spines post-OGD, whereas neurons in hypothalamus and brainstem display no such injury. Exposure to the Na+/K+ ATPase inhibitor ouabain (100 μM), induces depolarization similar to OGD in all cell types tested. Moreover, elevated [K+]o evokes spreading depression (SD), a milder version of AD, in higher brain but not hypothalamus or brainstem so weak AD correlates with the inability to generate SD. In summary, overriding the Na+/K+ pump using OGD, ouabain or elevated [K+]o evokes steep and robust depolarization of higher gray matter. We show that this important regional difference can be largely accounted for by the intrinsic properties of the resident neurons and that Na+/K+ ATPase pump efficiency is a major determining factor generating strong or weak spreading depolarizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.