3 resultados para air cooling systems
em QSpace: Queen's University - Canada
Resumo:
Greenhouses have become an invaluable source of year-round food production. Further development of viable and efficient high performance greenhouses is important for future food security. Closing the greenhouse envelope from the environment can provide benefits in space heating energy savings, pest control, and CO2 enrichment. This requires the application of a novel air conditioning system to handle the high cooling loads experienced by a greenhouse. Liquid desiccant air-conditioning (LDAC) have been found to provide high latent cooling capacities, which is perfect for the application of a humid greenhouse microclimate. TRNSYS simulations were undertaken to study the feasibility of two liquid desiccant dehumidification systems based on their capacity to control the greenhouse microclimate, and their cooling performance. The base model (B-LDAC) included a natural gas boiler, and two cooling systems for seasonal operation. The second model (HP-LDAC) was a hybrid liquid desiccant-heat pump dehumidification system. The average tCOPdehum and tCOPtotal of the B-LDAC system increased from 0.40 and 0.56 in January to 0.94 and 1.09 in June. Increased load and performance during a sample summer day improved these values to 3.5 and 3.0, respectively. The average eCOPdehum and eCOPtotal values were 1.0 and 1.8 in winter, and 1.7 and 2.1 in summer. The HP-LDAC system produced similar daily performance trends where the annual average eCOPdehum and eCOPtotal values were 1.3 and 1.2, but the sample day saw peaks of 2.4 and 3.2, respectively. The B-LDAC and HP-LDAC results predicted greenhouse temperatures exceeding 30°C for 34% and 17% of the month of July, respectively. Similarly, humidity levels increased in summer months, with a maximum of 14% of the time spent over 80% in May for both models. The percentage of annual savings in space heating energy associated with closing the greenhouse to ventilation was 34%. The additional annual regeneration energy input was reduced by 26% to 526 kWhm-2, with the implementation of a heat recovery ventilator on the regeneration exhaust air. The models also predicted an electrical energy input of 245 kWhm-2 and 305 kWhm-2 for the B-LDAC and HP-LDAC simulations, respectively.
Resumo:
Thermally driven liquid-desiccant air-conditioners (LDAC) are a proven but still developing technology. LDACs can use a solar thermal system to reduce the operational cost and environmental impact of the system by reducing the amount of fuel (e.g. natural gas, propane, etc.) used to drive the system. LDACs also have a key benefit of being able to store energy in the form of concentrated desiccant storage. TRNSYS simulations were used to evaluate several different methods of improving the thermal and electrical coefficients of performance (COPt and COPe) and the solar fraction (SF) of a LDAC. The study analyzed a typical June to August cooling season in Toronto, Ontario. Utilizing properly sized, high-efficiency pumps increased the COPe to 3.67, an improvement of 55%. A new design, featuring a heat recovery ventilator on the scavenging-airstream and an energy recovery ventilator on the process-airstream, increased the COPt to 0.58, an improvement of 32%. This also improved the SF slightly to 54%, an increase of 8%. A new TRNSYS TYPE was created to model a stratified desiccant storage tank. Different volumes of desiccant were tested with a range of solar array system sizes. The largest storage tank coupled with the largest solar thermal array showed improvements of 64% in SF, increasing the value to 82%. The COPe was also improved by 17% and the COPt by 9%. When combining the heat recovery systems and the desiccant storage systems, the simulation results showed a 78% increase in COPe and 30% increase in COPt. A 77% improvement in SF and a 17% increase in total cooling rate were also predicted by the simulation. The total thermal energy consumed was 10% lower and the electrical consumption was 34% lower. The amount of non-renewable energy needed from the natural gas boiler was 77% lower. Comparisons were also made between LDACs and vapour-compression (VC) systems. Dependent on set-up, LDACs provided higher latent cooling rates and reduced electrical power consumption. Negatively, a thermal input was required for the LDAC systems but not for the VC systems.
Resumo:
Underground hardrock mining can be very energy intensive and in large part this can be attributed to the power consumption of underground ventilation systems. In general, the power consumed by a mine’s ventilation system and its overall scale are closely related to the amount of diesel power in operation. This is because diesel exhaust is a major source of underground air pollution, including diesel particulate matter (DPM), NO2 and heat, and because regulations tie air volumes to diesel engines. Furthermore, assuming the size of airways remains constant, the power consumption of the main system increases exponentially with the volume of air supplied to the mine. Therefore large diesel fleets lead to increased energy consumption and can also necessitate large capital expenditures on ventilation infrastructure in order to manage power requirements. Meeting ventilation requirements for equipment in a heading can result in a similar scenario with the biggest pieces leading to higher energy consumption and potentially necessitating larger ventilation tubing and taller drifts. Depending on the climate where the mine is located, large volumes of air can have a third impact on ventilation costs if heating or cooling the air is necessary. Annual heating and cooling costs, as well as the cost of the associated infrastructure, are directly related to the volume of air sent underground. This thesis considers electric mining equipment as a means for reducing the intensity and cost of energy consumption at underground, hardrock mines. Potentially, electric equipment could greatly reduce the volume of air needed to ventilate an entire mine as well as individual headings because they do not emit many of the contaminants found in diesel exhaust and because regulations do not connect air volumes to electric motors. Because of the exponential relationship between power consumption and air volumes, this could greatly reduce the amount of power required for mine ventilation as well as the capital cost of ventilation infrastructure. As heating and cooling costs are also directly linked to air volumes, the cost and energy intensity of heating and cooling the air would also be significantly reduced. A further incentive is that powering equipment from the grid is substantially cheaper than fuelling them with diesel and can also produce far fewer GHGs. Therefore, by eliminating diesel from the underground workers will enjoy safer working conditions and operators and society at large will gain from a smaller impact on the environment. Despite their significant potential, in order to produce a credible economic assessment of electric mining equipment their impact on underground systems must be understood and considered in their evaluation. Accordingly, a good deal of this thesis reviews technical considerations related to the use of electric mining equipment, especially ones that impact the economics of their implementation. The goal of this thesis will then be to present the economic potential of implementing the equipment, as well as to outline the key inputs which are necessary to support an evaluation and to provide a model and an approach which can be used by others if the relevant information is available and acceptable assumptions can be made.