3 resultados para adipose derived stem cell

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decellularized adipose tissue (DAT) is a promising biomaterial for soft tissue regeneration, and it provides a highly conducive microenvironment for human adipose-derived stem/stromal cell (ASC) attachment, proliferation, and adipogenesis. This thesis focused on developing techniques to fabricate 3-D bioscaffolds from enzymatically-digested DAT as platforms for ASC culture and delivery in adipose tissue engineering and large-scale ASC expansion. Initial work investigated chemically crosslinked microcarriers fabricated from pepsin-digested DAT as injectable adipo-inductive substrates for ASCs. DAT microcarriers highly supported ASC adipogenesis compared to gelatin microcarriers in a CELLSPIN system, as confirmed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, lipid accumulation, and endpoint RT-PCR. ASCs cultured on DAT microcarriers in proliferation medium also had elevated PPARγ, C/EBPα, and LPL expression which suggested adipo-inductive properties. In vivo testing of the DAT microcarriers exhibited stable volume retention and enhanced cellular infiltration, tissue remodeling, and angiogenesis. Building from this work, non-chemically crosslinked porous foams and bead foams were fabricated from α-amylase-digested DAT for soft tissue regeneration. Foams were stable and strongly supported ASC adipogenesis based on GPDH activity and endpoint RT-PCR. PPARγ, C/EBPα, and LPL expression in ASCs cultured on the foams in proliferation media indicated adipo-inductive properties. Foams with Young’s moduli similar to human fat also influenced ASC adipogenesis by enhanced GPDH activity. In vivo adipogenesis accompanied by a potent angiogenic response and rapid resorption showed their potential use in wound healing applications. Finally, non-chemically crosslinked porous microcarriers synthesized from α-amylase-digested DAT were investigated for ASC expansion. DAT microcarriers remained stable in culture and supported significantly higher ASC proliferation compared to Cultispher-S microcarriers in a CELLSPIN system. ASC immunophenotype was preserved for all expanded groups, with reduced adhesion marker expression under dynamic conditions. DAT microcarrier expansion upregulated ASC expression of early adipogenic (PPARγ, LPL) and chondrogenic (COMP) markers without inducing a mature phenotype. DAT microcarrier expanded ASCs also showed similar levels of adipogenesis and osteogenesis compared to Cultispher-S despite a significantly higher population fold-change, and had the highest level of chondrogenesis among all groups. This study demonstrates the promising use of DAT microcarriers as a clinically relevant strategy for ASC expansion while maintaining multilineage differentiation capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies suggest that lung cancer stem cells (CSCs) may play major roles in lung cancer development, metastasis and drug resistance. Therefore, identification of lung CSC drivers may provide promising targets for lung cancer. TAZ (transcriptional co-activator with PDZ-binding motif) is a transcriptional co-activator and key downstream effector of the Hippo pathway, which plays critical roles in various biological processes. TAZ has been shown to be overexpressed in non-small cell lung cancer (NSCLC) and involved in tumorigenicity of lung epithelial cells. However, whether TAZ is a driver for lung CSCs and tumor formation in vivo is unknown. In addition, the molecular mechanism underlying TAZ-induced lung tumorigenesis remains to be determined. In this study, we provided evidence that constitutively active TAZ (TAZ-S89A) is a driver for lung tumorigenesis in vivo in mice and formation of lung CSC. Oncogenes upregulated in TAZ-overexpressing cells were identified with further validation. The most dramatically activated gene, Aldh1a1 (Aldehyde dehydrogenase 1 family member a1), a well-established CSC marker, showed that TAZ induces Aldh1a1 transcription by activating its promoter activity through interaction with the transcription factor TEA domain (TEAD) family member. Most significantly, inhibition of ALDH1A1 with its inhibitor A37 or CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene knockout in lung cancer cells suppressed lung tumorigenic and CSC phenotypes in vitro, and tumor formation in mice in vivo. In conclusion, this study identified TAZ as a novel inducer of lung CSCs and the first transcriptional activator of the stem cell marker ALDH1A1. Most significantly, we identified ALDH1A1 as a critical meditator of TAZ-induced tumorigenic and CSC phenotypes in lung cancer. Our studies provided preclinical data for targeting of TAZ-TEAD-ALDH1A1 signaling to inhibit CSC-induced lung tumorigenesis and drug resistance in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FES protein-tyrosine kinase (PTK) activation downstream of the KIT receptor in mast cells (MC) promotes cell polarization and migration towards the KIT ligand Stem cell factor (SCF). A variety of tumours secrete SCF to promote MC recruitment and release of mediators that enhance tumour vascularization and growth. This study investigates whether FES promotes MC migration via regulation of microtubules (MTs), and if FES is required for MC recruitment to the tumour microenvironment. MT binding assays showed that FES has at least two MT binding sites, which likely contribute to the partial co-localization of FES with MTs in polarized bone marrow-derived mast cells (BMMCs). Live cell imaging revealed a significant defect in chemotaxis of FES-deficient BMMCs towards SCF embedded within an agarose drop, which correlated with less MT organization compared to control cells. To extend these results to a tumour model, mouse mammary carcinoma AC2M2 cells were engrafted under the skin and into the mammary fat pads of immune compromised control (nu/nu) or FES-deficient (nu/nu:fes-/-) mice. A drastic reduction in tumour-associated MCs was observed in FES-deficient mice compared to control in both mammary and skin tissue sections. This correlated with a trend towards reduced tumour volumes in FES-deficient mice. These results implicate FES signaling downstream of KIT, in promoting MT reorganization during cell polarization and for chemotaxis of MCs towards tumour-derived SCF. Thus, FES is a potential therapeutic target to limit recruitment of stromal mast cells or macrophages to solid tumours that enhance tumour progression.