2 resultados para activity, detection, monitoring, wearable, sensors, accelerometer

em QSpace: Queen's University - Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Moderate-to-vigorous physical activity (MVPA) is an important determinant of children’s physical health, and is commonly measured using accelerometers. A major limitation of accelerometers is non-wear time, which is the time the participant did not wear their device. Given that non-wear time is traditionally discarded from the dataset prior to estimating MVPA, final estimates of MVPA may be biased. Therefore, alternate approaches should be explored. OBJECTIVES: The objectives of this thesis were to 1) develop and describe an imputation approach that uses the socio-demographic, time, health, and behavioural data from participants to replace non-wear time accelerometer data, 2) determine the extent to which imputation of non-wear time data influences estimates of MVPA, and 3) determine if imputation of non-wear time data influences the associations between MVPA, body mass index (BMI), and systolic blood pressure (SBP). METHODS: Seven days of accelerometer data were collected using Actical accelerometers from 332 children aged 10-13. Three methods for handling missing accelerometer data were compared: 1) the “non-imputed” method wherein non-wear time was deleted from the dataset, 2) imputation dataset I, wherein the imputation of MVPA during non-wear time was based upon socio-demographic factors of the participant (e.g., age), health information (e.g., BMI), and time characteristics of the non-wear period (e.g., season), and 3) imputation dataset II wherein the imputation of MVPA was based upon the same variables as imputation dataset I, plus organized sport information. Associations between MVPA and health outcomes in each method were assessed using linear regression. RESULTS: Non-wear time accounted for 7.5% of epochs during waking hours. The average minutes/day of MVPA was 56.8 (95% CI: 54.2, 59.5) in the non-imputed dataset, 58.4 (95% CI: 55.8, 61.0) in imputed dataset I, and 59.0 (95% CI: 56.3, 61.5) in imputed dataset II. Estimates between datasets were not significantly different. The strength of the relationship between MVPA with BMI and SBP were comparable between all three datasets. CONCLUSION: These findings suggest that studies that achieve high accelerometer compliance with unsystematic patterns of missing data can use the traditional approach of deleting non-wear time from the dataset to obtain MVPA measures without substantial bias.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With applications ranging from aerospace to biomedicine, additive manufacturing (AM) has been revolutionizing the manufacturing industry. The ability of additive techniques, such as selective laser melting (SLM), to create fully functional, geometrically complex, and unique parts out of high strength materials is of great interest. Unfortunately, despite numerous advantages afforded by this technology, its widespread adoption is hindered by a lack of on-line, real time feedback control and quality assurance techniques. In this thesis, inline coherent imaging (ICI), a broadband, spatially coherent imaging technique, is used to observe the SLM process in 15 - 45 $\mu m$ 316L stainless steel. Imaging of both single and multilayer builds is performed at a rate of 200 $kHz$, with a resolution of tens of microns, and a high dynamic range rendering it impervious to blinding from the process beam. This allows imaging before, during, and after laser processing to observe changes in the morphology and stability of the melt. Galvanometer-based scanning of the imaging beam relative to the process beam during the creation of single tracks is used to gain a unique perspective of the SLM process that has been so far unobservable by other monitoring techniques. Single track processing is also used to investigate the possibility of a preliminary feedback control parameter based on the process beam power, through imaging with both coaxial and 100 $\mu m$ offset alignment with respect to the process beam. The 100 $\mu m$ offset improved imaging by increasing the number of bright A-lines (i.e. with signal greater than the 10 $dB$ noise floor) by 300\%. The overlap between adjacent tracks in a single layer is imaged to detect characteristic fault signatures. Full multilayer builds are carried out and the resultant ICI images are used to detect defects in the finished part and improve upon the initial design of the build system. Damage to the recoater blade is assessed using powder layer scans acquired during a 3D build. The ability of ICI to monitor SLM processes at such high rates with high resolution offers extraordinary potential for future advances in on-line feedback control of additive manufacturing.