1 resultado para Yakima County (Wash.) -- Maps -- Databases.
em QSpace: Queen's University - Canada
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (53)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Boston University Digital Common (15)
- Brock University, Canada (74)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (41)
- CentAUR: Central Archive University of Reading - UK (45)
- Center for Jewish History Digital Collections (4)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (34)
- Cochin University of Science & Technology (CUSAT), India (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (7)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (3)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (63)
- Helda - Digital Repository of University of Helsinki (9)
- Indian Institute of Science - Bangalore - Índia (55)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (6)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (109)
- Queensland University of Technology - ePrints Archive (101)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (6)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- South Carolina State Documents Depository (122)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (1)
- University of Michigan (61)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (15)
- University of Washington (13)
- USA Library of Congress (50)
- WestminsterResearch - UK (3)
Resumo:
Without an absolute position sensor (e.g., GPS), an accurate heading estimate is necessary for proper localization of an autonomous unmanned vehicle or robot. This paper introduces direction maps (DMs), which represent the directions of only dominant surfaces of the vehicle’s environment and can be created with negligible effort. Given an environment with reoccurring surface directions (e.g., walls, buildings, parked cars), lines extracted from laser scans can be matched with a DM to provide an extremely lightweight heading estimate that is shown, through experimentation, to drastically reduce the growth of heading errors. The algorithm was tested using a Husky A200 mobile robot in a warehouse environment over traverses hundreds of metres in length. When a simple a priori DM was provided, the resulting heading estimation showed virtually no error growth.