2 resultados para Web Service Modelling Ontology (WSMO)

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the quick advance of web service technologies, end-users can conduct various on-line tasks, such as shopping on-line. Usually, end-users compose a set of services to accomplish a task, and need to enter values to services to invoke the composite services. Quite often, users re-visit websites and use services to perform re-occurring tasks. The users are required to enter the same information into various web services to accomplish such re-occurring tasks. However, repetitively typing the same information into services is a tedious job for end-users. It can negatively impact user experience when an end-user needs to type the re-occurring information repetitively into web services. Recent studies have proposed several approaches to help users fill in values to services automatically. However, prior studies mainly suffer the following drawbacks: (1) limited support of collecting and analyzing user inputs; (2) poor accuracy of filling values to services; (3) not designed for service composition. To overcome the aforementioned drawbacks, we need maximize the reuse of previous user inputs across services and end-users. In this thesis, we introduce our approaches that prevent end-users from entering the same information into repetitive on-line tasks. More specifically, we improve the process of filling out services in the following 4 aspects: First, we investigate the characteristics of input parameters. We propose an ontology-based approach to automatically categorize parameters and fill values to the categorized input parameters. Second, we propose a comprehensive framework that leverages user contexts and usage patterns into the process of filling values to services. Third, we propose an approach for maximizing the value propagation among services and end-users by linking a set of semantically related parameters together and similar end-users. Last, we propose a ranking-based framework that ranks a list of previous user inputs for an input parameter to save a user from unnecessary data entries. Our framework learns and analyzes interactions of user inputs and input parameters to rank user inputs for input parameters under different contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-frequency Eddy Current (EC) inspection with a transmit-receive probe (two horizontally offset coils) is used to monitor the Pressure Tube (PT) to Calandria Tube (CT) gap of CANDU® fuel channels. Accurate gap measurements are crucial to ensure fitness of service; however, variations in probe liftoff, PT electrical resistivity, and PT wall thickness can generate systematic measurement errors. Validated mathematical models of the EC probe are very useful for data interpretation, and may improve the gap measurement under inspection conditions where these parameters vary. As a first step, exact solutions for the electromagnetic response of a transmit-receive coil pair situated above two parallel plates separated by an air gap were developed. This model was validated against experimental data with flat-plate samples. Finite element method models revealed that this geometrical approximation could not accurately match experimental data with real tubes, so analytical solutions for the probe in a double-walled pipe (the CANDU® fuel channel geometry) were generated using the Second-Order Vector Potential (SOVP) formalism. All electromagnetic coupling coefficients arising from the probe, and the layered conductors were determined and substituted into Kirchhoff’s circuit equations for the calculation of the pickup coil signal. The flat-plate model was used as a basis for an Inverse Algorithm (IA) to simultaneously extract the relevant experimental parameters from EC data. The IA was validated over a large range of second layer plate resistivities (1.7 to 174 µΩ∙cm), plate wall thickness (~1 to 4.9 mm), probe liftoff (~2 mm to 8 mm), and plate-to plate gap (~0 mm to 13 mm). The IA achieved a relative error of less than 6% for the extracted FP resistivity and an accuracy of ±0.1 mm for the LO measurement. The IA was able to achieve a plate gap measurement with an accuracy of less than ±0.7 mm error over a ~2.4 mm to 7.5 mm probe liftoff and ±0.3 mm at nominal liftoff (2.42±0.05 mm), providing confidence in the general validity of the algorithm. This demonstrates the potential of using an analytical model to extract variable parameters that may affect the gap measurement accuracy.